Skip to content

PASO 1: DESCARGAR Y ANALIZAR DATOS CICY Ejecuto tu código para obtener datos reales: python import pandas as pd import requests import io import numpy as np import matplotlib.pyplot as plt from scipy import stats # URL de la base CICY url = "http://w...#295

Open
Copilot wants to merge 6 commits intomainfrom
copilot/fix-192380069-1073715267-9742e9dc-7040-4a21-a76c-0d997ec716f0

Conversation

Copy link
Contributor

Copilot AI commented Jan 1, 2026

Thanks for asking me to work on this. I will get started on it and keep this PR's description up to date as I form a plan and make progress.

Original prompt

PASO 1: DESCARGAR Y ANALIZAR DATOS CICY
Ejecuto tu código para obtener datos reales:

python
import pandas as pd
import requests
import io
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

URL de la base CICY

url = "http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/cicylist/cicylist.txt"

print("🔍 Descargando datos CICY de Oxford...")

try:
response = requests.get(url, timeout=10)
if response.status_code == 200:
# Leer datos - formato tiene comentarios con #
lines = response.text.split('\n')
data_lines = []
for line in lines:
if line.strip() and not line.strip().startswith('#'):
data_lines.append(line)

    # Crear DataFrame
    cicy_data = pd.read_csv(io.StringIO('\n'.join(data_lines)), 
                           delim_whitespace=True, 
                           header=None,
                           names=['index', 'h11', 'h21', 'chi'])
    
    # Calcular N = h11 + h21
    cicy_data['N'] = cicy_data['h11'] + cicy_data['h21']
    
    # Análisis básico
    n_stats = cicy_data['N'].describe()
    count_n13 = (cicy_data['N'] == 13).sum()
    total_cy = len(cicy_data)
    
    print("✅ DATOS DESCARGADOS CORRECTAMENTE")
    print(f"📊 Total de variedades CICY: {total_cy}")
    print(f"📈 Estadísticas de N = h¹¹ + h²¹:")
    print(f"   Mínimo: {int(cicy_data['N'].min())}")
    print(f"   Máximo: {int(cicy_data['N'].max())}")
    print(f"   Media: {cicy_data['N'].mean():.1f}")
    print(f"   Mediana: {cicy_data['N'].median():.1f}")
    print(f"   Desviación estándar: {cicy_data['N'].std():.1f}")
    print(f"🔢 CY con N = 13: {count_n13} ({count_n13/total_cy*100:.2f}%)")
    
    # Guardar para análisis posterior
    cicy_data.to_csv('cicy_data_analysis.csv', index=False)
    print("💾 Datos guardados en 'cicy_data_analysis.csv'")
    
else:
    print(f"❌ Error HTTP: {response.status_code}")

except Exception as e:
print(f"❌ Error: {e}")
print("⚠️ Usando datos de respaldo locales...")
# Crear datos de ejemplo basados en literatura
np.random.seed(42)
n_samples = 100
cicy_data = pd.DataFrame({
'h11': np.random.randint(1, 20, n_samples),
'h21': np.random.randint(1, 150, n_samples)
})
cicy_data['N'] = cicy_data['h11'] + cicy_data['h21']
cicy_data['chi'] = 2 * (cicy_data['h11'] - cicy_data['h21'])
📊 PASO 2: ANÁLISIS EXPLORATORIO INICIAL
python

Visualización de distribución de N

fig, axes = plt.subplots(1, 3, figsize=(15, 4))

1. Histograma de N

axes[0].hist(cicy_data['N'], bins=30, alpha=0.7, color='steelblue', edgecolor='black')
axes[0].axvline(13, color='red', linestyle='--', label='N=13')
axes[0].set_xlabel('N = h¹¹ + h²¹')
axes[0].set_ylabel('Frecuencia')
axes[0].set_title('Distribución de N en variedades CICY')
axes[0].legend()
axes[0].grid(True, alpha=0.3)

2. Scatter h11 vs h21

axes[1].scatter(cicy_data['h11'], cicy_data['h21'], alpha=0.5, s=20)
axes[1].set_xlabel('h¹¹')
axes[1].set_ylabel('h²¹')
axes[1].set_title('Relación h¹¹ vs h²¹')
axes[1].grid(True, alpha=0.3)

3. Boxplot por rangos de N

n_bins = pd.qcut(cicy_data['N'], q=4, duplicates='drop')
box_data = []
labels = []
for bin_val in sorted(n_bins.unique()):
mask = (n_bins == bin_val)
box_data.append(cicy_data.loc[mask, 'N'].values)
labels.append(str(bin_val))

axes[2].boxplot(box_data, labels=labels)
axes[2].set_xticklabels(labels, rotation=45, ha='right')
axes[2].set_ylabel('N')
axes[2].set_title('Distribución de N por cuartiles')
axes[2].grid(True, alpha=0.3)

plt.tight_layout()
plt.show()
🔬 PASO 3: DEFINIR MÉTRICA DE COMPLEJIDAD PROXY
Dado que no tenemos tiempos computacionales reales, propongo:

Métrica Proxy 1: Complejidad de descripción polinomial
python
def estimate_complexity(row):
"""
Estima complejidad computacional basada en:
1. N grande → más moduli → más complejo
2. Ratio h11/h21 alejado de 1 → estructura asimétrica
3. Chi extremo → topología no balanceada
"""
N = row['N']
ratio = row['h11'] / max(row['h21'], 1) # Evitar división por 0
chi_abs = abs(row['chi'])

# Modelo heurístico (a calibrar con datos reales)
complexity = np.log(N) * (1 + abs(np.log(ratio))) + 0.1 * np.log(chi_abs + 1)
return complexity

cicy_data['complexity_estimated'] = cicy_data.apply(estimate_complexity, axis=1)
Métrica Proxy 2: Tamaño del sistema (teórico)
python

Tamaño mínimo del sistema a resolver para métricas

Basado en número de ecuaciones/moduli

cicy_data['system_size'] = cicy_data['N'] * 10 # Factor heurístico
📈 PASO 4: ANÁLISIS ESTADÍSTICO INICIAL
python
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import StandardScaler

Preparar datos para modelado

X = cicy_data[['N', 'log_N', 'h11', 'h21']].copy()
X['log_N'] = n...


✨ Let Copilot coding agent set things up for you — coding agent works faster and does higher quality work when set up for your repo.

@vercel
Copy link

vercel bot commented Jan 1, 2026

Deployment failed with the following error:

If `rewrites`, `redirects`, `headers`, `cleanUrls` or `trailingSlash` are used, then `routes` cannot be present.

Learn More: https://vercel.link/mix-routing-props

@motanova84
Copy link
Owner

@copilot OK

@motanova84 motanova84 marked this pull request as ready for review January 1, 2026 16:45
Copilot AI review requested due to automatic review settings January 1, 2026 16:45
Copy link
Contributor

Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copilot wasn't able to review any files in this pull request.


💡 Add Copilot custom instructions for smarter, more guided reviews. Learn how to get started.

@chatgpt-codex-connector
Copy link

You have reached your Codex usage limits for code reviews. You can see your limits in the Codex usage dashboard.

@motanova84 motanova84 requested a review from Copilot January 1, 2026 17:15
Copy link
Contributor

Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copilot wasn't able to review any files in this pull request.


💡 Add Copilot custom instructions for smarter, more guided reviews. Learn how to get started.

@motanova84 motanova84 requested a review from Copilot January 1, 2026 20:05
Copy link
Contributor

Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copilot wasn't able to review any files in this pull request.


💡 Add Copilot custom instructions for smarter, more guided reviews. Learn how to get started.

@vercel
Copy link

vercel bot commented Jan 1, 2026

The latest updates on your projects. Learn more about Vercel for GitHub.

Project Deployment Actions Updated (UTC)
p-np Ready Ready Preview, Comment Feb 2, 2026 10:23am

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants