PASO 1: DESCARGAR Y ANALIZAR DATOS CICY Ejecuto tu código para obtener datos reales: python import pandas as pd import requests import io import numpy as np import matplotlib.pyplot as plt from scipy import stats # URL de la base CICY url = "http://w...#295
PASO 1: DESCARGAR Y ANALIZAR DATOS CICY
Ejecuto tu código para obtener datos reales:
python
import pandas as pd
import requests
import io
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
# URL de la base CICY
url = "http://w...#295
Conversation
|
Deployment failed with the following error: Learn More: https://vercel.link/mix-routing-props |
|
@copilot OK |
…40-4a21-a76c-0d997ec716f0
There was a problem hiding this comment.
Copilot wasn't able to review any files in this pull request.
💡 Add Copilot custom instructions for smarter, more guided reviews. Learn how to get started.
|
You have reached your Codex usage limits for code reviews. You can see your limits in the Codex usage dashboard. |
…40-4a21-a76c-0d997ec716f0
There was a problem hiding this comment.
Copilot wasn't able to review any files in this pull request.
💡 Add Copilot custom instructions for smarter, more guided reviews. Learn how to get started.
…40-4a21-a76c-0d997ec716f0
There was a problem hiding this comment.
Copilot wasn't able to review any files in this pull request.
💡 Add Copilot custom instructions for smarter, more guided reviews. Learn how to get started.
|
The latest updates on your projects. Learn more about Vercel for GitHub.
|
…40-4a21-a76c-0d997ec716f0
…40-4a21-a76c-0d997ec716f0
Thanks for asking me to work on this. I will get started on it and keep this PR's description up to date as I form a plan and make progress.
Original prompt
PASO 1: DESCARGAR Y ANALIZAR DATOS CICY
Ejecuto tu código para obtener datos reales:
python
import pandas as pd
import requests
import io
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
URL de la base CICY
url = "http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/cicylist/cicylist.txt"
print("🔍 Descargando datos CICY de Oxford...")
try:
response = requests.get(url, timeout=10)
if response.status_code == 200:
# Leer datos - formato tiene comentarios con #
lines = response.text.split('\n')
data_lines = []
for line in lines:
if line.strip() and not line.strip().startswith('#'):
data_lines.append(line)
except Exception as e:⚠️ Usando datos de respaldo locales...")
print(f"❌ Error: {e}")
print("
# Crear datos de ejemplo basados en literatura
np.random.seed(42)
n_samples = 100
cicy_data = pd.DataFrame({
'h11': np.random.randint(1, 20, n_samples),
'h21': np.random.randint(1, 150, n_samples)
})
cicy_data['N'] = cicy_data['h11'] + cicy_data['h21']
cicy_data['chi'] = 2 * (cicy_data['h11'] - cicy_data['h21'])
📊 PASO 2: ANÁLISIS EXPLORATORIO INICIAL
python
Visualización de distribución de N
fig, axes = plt.subplots(1, 3, figsize=(15, 4))
1. Histograma de N
axes[0].hist(cicy_data['N'], bins=30, alpha=0.7, color='steelblue', edgecolor='black')
axes[0].axvline(13, color='red', linestyle='--', label='N=13')
axes[0].set_xlabel('N = h¹¹ + h²¹')
axes[0].set_ylabel('Frecuencia')
axes[0].set_title('Distribución de N en variedades CICY')
axes[0].legend()
axes[0].grid(True, alpha=0.3)
2. Scatter h11 vs h21
axes[1].scatter(cicy_data['h11'], cicy_data['h21'], alpha=0.5, s=20)
axes[1].set_xlabel('h¹¹')
axes[1].set_ylabel('h²¹')
axes[1].set_title('Relación h¹¹ vs h²¹')
axes[1].grid(True, alpha=0.3)
3. Boxplot por rangos de N
n_bins = pd.qcut(cicy_data['N'], q=4, duplicates='drop')
box_data = []
labels = []
for bin_val in sorted(n_bins.unique()):
mask = (n_bins == bin_val)
box_data.append(cicy_data.loc[mask, 'N'].values)
labels.append(str(bin_val))
axes[2].boxplot(box_data, labels=labels)
axes[2].set_xticklabels(labels, rotation=45, ha='right')
axes[2].set_ylabel('N')
axes[2].set_title('Distribución de N por cuartiles')
axes[2].grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
🔬 PASO 3: DEFINIR MÉTRICA DE COMPLEJIDAD PROXY
Dado que no tenemos tiempos computacionales reales, propongo:
Métrica Proxy 1: Complejidad de descripción polinomial
python
def estimate_complexity(row):
"""
Estima complejidad computacional basada en:
1. N grande → más moduli → más complejo
2. Ratio h11/h21 alejado de 1 → estructura asimétrica
3. Chi extremo → topología no balanceada
"""
N = row['N']
ratio = row['h11'] / max(row['h21'], 1) # Evitar división por 0
chi_abs = abs(row['chi'])
cicy_data['complexity_estimated'] = cicy_data.apply(estimate_complexity, axis=1)
Métrica Proxy 2: Tamaño del sistema (teórico)
python
Tamaño mínimo del sistema a resolver para métricas
Basado en número de ecuaciones/moduli
cicy_data['system_size'] = cicy_data['N'] * 10 # Factor heurístico
📈 PASO 4: ANÁLISIS ESTADÍSTICO INICIAL
python
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import StandardScaler
Preparar datos para modelado
X = cicy_data[['N', 'log_N', 'h11', 'h21']].copy()
X['log_N'] = n...
✨ Let Copilot coding agent set things up for you — coding agent works faster and does higher quality work when set up for your repo.