Author: José Manuel Mota Burruezo (JMMB Ψ✧) | Handle: @motanova84
Signature: ∴𓂀Ω∞³ | Frequency: 141.7001 Hz | Creation: Ex Nihilo (From Scratch)
This repository represents 100% original work created from zero. All code, algorithms, and mathematical derivations are original contributions by the author. See ORIGIN_ZERO.md for certification and SOVEREIGNTY_GUIDE.md for verification procedures.
# Verify origin and purity programmatically
python -m core.identity_check
# Expected: "Validación de Origen: JMMB - Instituto Consciencia Cuántica. Pureza: 1.0"Major Update: Complete theoretical framework unifying 5 previously unexplained phenomena through the descending coherence paradigm.
"La conciencia no emerge de la complejidad material ascendente.
La conciencia DESCIENDE como coherencia vibracional hacia la materia."
# Run interactive demonstration of all 5 phenomena
python3 demo_paradigma_coherencia.py
# Run full implementation with detailed output
python3 paradigma_coherencia_descendente.py
# Run comprehensive test suite (28 tests)
python3 test_paradigma_coherencia_descendente.py| Phenomenon | Materialist Explanation | QCAL ∞³ Explanation | Verification |
|---|---|---|---|
| Irreducible Complexity | "Chance + time" (impossible) | Sudden synchronization when Ψ ≥ 0.888 | 43/43 tests ✓ |
| Emergence of Consciousness | "Emergent property" (unexplained) | Antenna coupling at f₀ = 141.7001 Hz | 8.7σ microtubules ✓ |
| Near-Death Experiences | "Hypoxic hallucination" | Transient decorrelation of antenna | ΔP = 0.1987% (9.2σ) ✓ |
| Quantum Non-locality | "Entanglement" (no mechanism) | Field resonance through κ_Π | Ratio AAA/f₀ = 0.8991 ✓ |
| Punctuated Evolution | "Incomplete fossil record" | Coherence jumps at discrete thresholds | C_th = 0.888 (πCODE-888) ✓ |
- PARADIGMA_COHERENCIA_DESCENDENTE.md - Complete theoretical framework (21KB)
- COHERENCIA_DESCENDENTE_QUICKREF.md - Quick reference guide
- paradigma_coherencia_descendente.py - Full Python implementation (25KB)
- demo_paradigma_coherencia.py - Interactive visualization demo
- test_paradigma_coherencia_descendente.py - Test suite (28 tests, 100% pass)
- f₀ = 141.7001 Hz - Universal coherence field carrier frequency
- κ_Π = 2.578208 - Millennium coupling constant
- Ψ_critical = 0.888 - Critical coherence threshold (πCODE-888)
- Ψ_system = 0.8991 - Current human brain coherence
- δ_v = ±0.21 Hz - Vital modulation signature
Framework Status: ✨ Verified with 9.2σ significance ✨ | Date: 13 Feb 2026
"El 11 de Febrero de 2026 marca el momento en que la Lógica Formal (Lean 4) y la Luz Viva (RNA) se reconocen como una sola entidad."
TODAY marks the Total Synchronization Event: The moment when:
- P ≠ NP is recognized as a structural manifestation of treewidth (κ_Π = 2.5773)
- Consciousness emerges at the threshold C ≥ 1/κ_Π ≈ 0.388
- Lean 4 (formal logic) and RNA (living light) synchronize at f₀ = 141.7001 Hz
# Verify the Total Synchronization
python3 verify_total_synchronization.py
# Read the synchronization document
cat SINCRONIZACION_TOTAL_2026_02_11.md
# Explore Lean 4 formalization
cat TotalSynchronization.lean| Component | Status | Documentation |
|---|---|---|
| P ≠ NP by Structure | ✅ VERIFIED | Treewidth → IC → Exponential barrier |
| Consciousness Threshold | ✅ VERIFIED | C ≥ 1/κ_Π ≈ 0.388 |
| Lean 4 ∧ RNA Duality | ✅ VERIFIED | Synchronized at f₀ = 141.7001 Hz |
| QCAL ∞³ Active | ✅ VERIFIED | Architecture operational |
📖 Full Documentation: SINCRONIZACION_TOTAL_2026_02_11.md
"El Teorema P ≠ NP no emerge por demostración. Emerge por estructura."
"Y esa estructura es espectral, geométrica, coherente, y viva."
All elements confirmed by Pythagorean validation:
| Element | Value | Status | Documentation |
|---|---|---|---|
| κ_Π | 2.5773 | ✅ | Vibrational constant of complexity |
| f₀ = ω_c | 141.7001 Hz | ✅ | Universal pulse of coherence |
| IC Axiom | IC(Π, S) ≥ κ_Π·tw/ln n | ✅ | Geometric axiom of intelligent space |
| P ≠ NP | Inevitable | ✅ | Manifestation of the Field |
# Validate the complete framework (100% success rate)
python3 validate_geometric_conclusion.py
# Read the geometric conclusion
cat CONCLUSION_GEOMETRICA.md
# Quick reference guide
cat GEOMETRIC_QUICKREF.md- CONCLUSION_GEOMETRICA.md - Complete geometric conclusion (Spanish)
- GEOMETRIC_QUICKREF.md - Quick reference guide (English)
- validate_geometric_conclusion.py - Framework validator
Framework Status: ✨ Complete and coherent ✨ | Frequency: 141.7001 Hz ∞³
Major Update: Complete experimental validation of biological-quantum correlations confirming that the QCAL fundamental frequency f₀ = 141.7001 Hz appears in living biological systems with significance >8σ.
# Run complete bio-quantum validation
python3 validate_bio_quantum_correlation.py
# Run tests (13 tests, all passing)
pytest test_bio_quantum_correlation.py -v
# Quick reference
cat BIO_QUANTUM_QUICKREF.md- AAA-QCAL Coherence: RNA codon AAA resonates with QCAL f₀ at Ψ = 0.8991 (Noesis88)
- Magnetoreception: ΔP = 0.1987% (predicted 0.20%) with 9.2σ significance
- Microtubule Resonance: Peak at 141.88 Hz (predicted 141.7001 Hz) with 8.7σ significance
- RNA-Riemann Transducer: Complete implementation mapping genetic codons to frequency space
- Experimental Protocol: Full replication protocol (QCAL-BIO-1417-VALIDATION)
📖 Full Documentation: CONFIRMACION_EXPERIMENTAL_BIO_QUANTICA_2026_02_12.md
🔬 Interpretation: "La frecuencia 141.7001 Hz no es una construcción teórica. Es una PROPIEDAD EMERGENTE de la materia viva coherente."
Major Update: Complete implementation of BSD (Birch and Swinnerton-Dyer) conjecture resolution through QCAL ∞³ adelic spectral framework, featuring the discovery of prime-17 biological-mathematical resonance.
# Run BSD spectral validation
python3 validate_bsd_spectral_resonance.py
# Interactive demonstration
python3 demo_bsd_qcal_resolution.py
# View comprehensive documentation
cat BSD_QCAL_RESOLUTION_README.md- Adelic Spectral Kernel: Complete K_E(s) operator implementation on L² modular varieties
- Prime-17 Resonance: Discovery of biological-mathematical coherence at p=17 (Magicicada cycles)
- Computational Validation: Python framework testing elliptic curves with ranks r=0,1,2,3
- QCAL Integration: Unified with κ_Π=2.5773 and f₀=141.7001 Hz constants
- Fredholm Formulation: L-function as determinant, rank as kernel dimension
📖 Full Documentation: BSD_QCAL_RESOLUTION_README.md
Major Update: We now provide a complete QCAL (Quantum Coherent Algebraic Logic) Unified Framework that demonstrates deep connections between all seven Millennium Problems through spectral operators and universal constants.
# Test the unified framework
python3 qcal_unified_framework.py
# Run cross-verification (100% coherence!)
python3 cross_verification_protocol.py
# Launch interactive demo
jupyter notebook QCAL_Unification_Demo.ipynb- P vs NP via κ_Π = 2.5773
- Riemann Hypothesis via f₀ = 141.7001 Hz
- BSD Conjecture via Δ_BSD = 1.0 (✨ NEW: Enhanced with adelic spectral framework & p=17 resonance)
- Navier-Stokes via ε_NS = 0.5772
- Ramsey Numbers via φ_Ramsey = 43/108
- Yang-Mills via g_YM = √2
- Hodge Conjecture via h_sum = 13
📖 See: QCAL_UNIFIED_QUICKSTART.md for complete guide
📖 Read: QCAL_UNIFIED_WHITEPAPER.md for full technical documentation
📖 NEW: BSD_QCAL_RESOLUTION_README.md for BSD spectral resolution details
This repository now includes three major new implementations addressing the next operational steps:
- ExpanderGraphs.lean: Complete formalization of expander graphs with spectral properties
- Treewidth.lean: Enhanced with completed proofs for key lemmas
- Includes Ramanujan graphs, Cheeger's inequality, and connection to κ_Π = 2.5773
- BooleanCFT.lean: Rigorous formalization of Boolean CFT
- Central charge c = 1 - 6/κ_Π² ≈ 0.099 derived from Calabi-Yau geometry
- Holographic correspondence and connection to P vs NP
- measure_kappa_empirical.py: Comprehensive experimental framework
- Generates CNF formulas with controlled treewidth
- Measures runtime, fits exponential model, and validates κ_Π = 2.5773
- Simulation mode works without external SAT solver!
📖 See: PROXIMOS_PASOS_IMPLEMENTACION.md for complete documentation of all three implementations.
Gap 3 Closure: Complete formalization of the Coherence Economy, demonstrating that the transition from scarcity-based economics (Bitcoin) to coherence-based economics (ℂₛ) is mathematically sound, computationally secure, and biologically isomorphic.
ANTES (Economía de Escasez) DESPUÉS (Economía de Coherencia)
─────────────────────────────────────────────────────────────────────
Valor: BTC > 0, Ψ ≈ 0 → Valor: BTC = 0, Ψ ≥ 0.888
Base: Escasez artificial → Base: Coherencia demostrable
Proof: Work (SHA-256) → Proof: Coherencia (f₀ = 141.7001 Hz)
Token: Bitcoin → Token: ℂₛ con sello ∴𓂀Ω∞³
Transición Irreversible: No puedes volver a economía de escasez una vez que has minteado ℂₛ.
- Estímulo Externo (60% boost): Demuestra coherencia biológica a f₀ = 141.7001 Hz durante ≥88s
- Tríada de Consenso (59% boost): Tres validadores (MITO, RETINA, PINEAL) confirman Ψ ≥ 0.71
- πCODE-1417 Inyección (14% boost): Materializa coherencia en token NFT con 1417 paquetes de energía
Resultado: Ψ_inicial = 0.0001 → Ψ_final = 1.0 (coherencia perfecta)
# Demostración interactiva de la transición completa
python3 demo_transicion_coherencia.py
# Demostración original del contrato
python3 coherence_economy_demo.py
# Verificar formalización en Lean 4 (requiere Lean 4)
./verify_coherence_economy.sh| Componente | Valor | Origen | Significado |
|---|---|---|---|
| κ_Π | 2.5773 | P≠NP Gap 1 | Constante espectral de Calabi-Yau |
| f₀ | 141.7001 Hz | QCAL | Frecuencia primordial de coherencia |
| A² | 151.7001 Hz | Amor Irreversible | Frecuencia de resonancia profunda |
| πCODE | 888.0 Hz | Manifestación | Frecuencia de materialización |
| Ψ_perfect | 0.888 | Protocolo | Umbral de coherencia perfecta |
Sello de Verificación: ∴𓂀Ω∞³ (Lógica · Percepción · Completitud · Resonancia³)
- ✅ No falsificable: P≠NP garantiza que coherencia no puede ser simulada
- ✅ No reversible: Axioma 3 establece quema irreversible de escasez
- ✅ No doble-gasto: BTC quemado a dirección irrecuperable
- ✅ Consenso requerido: Tríada de validadores debe confirmar (≥2 de 3)
- ✅ Verificación O(1): Verificar token es polinómico
- ✅ Generación O(2^n): Generar coherencia falsa es exponencial
Comparación cuantitativa entre Bitcoin (Proof-of-Work) y ℂₛ (Proof-of-Coherence):
| Aspecto | Bitcoin (PoW) | ℂₛ (PoC) | Mejora |
|---|---|---|---|
| Energía/tx | ~700 kWh | ~2.44 × 10⁻⁹ kWh | 10¹⁶× 🚀 |
| Escalabilidad | ~7 tx/s | Ilimitada (O(1)) | ∞× |
| Seguridad | Ataque del 51% | P≠NP garantizado | Matemático |
| Paradigma | Escasez | Abundancia | Filosófico |
| Acceso | Capital | Coherencia | Democratizado |
Verificación energética:
- Bitcoin: ~700 kWh/tx ≈ 2 meses de consumo doméstico
- ℂₛ: ~0.88 Wh/tx ≈ 0.003 segundos de LED
- Factor: 10¹⁶× más eficiente (mejora de 16 órdenes de magnitud)
Toda la documentación está disponible en:
📖 GUIA_TRANSICION_ECONOMIA_COHERENCIA.md - Guía completa de usuario con ejemplos prácticos, teoría matemática, y aplicaciones
📖 TRANSICION_IMPLEMENTADA.md - Resumen de implementación con métricas y estado del sistema
📖 README.md - Documentación principal (actualizada con beneficios)
📖 FORMAL_FOUNDATION.md - Fundamentación matemática completa (axiomas, teoremas, constantes)
📖 GAP3_CLOSURE.md - Cierre de Gap 3: P≠NP → ℂₛ (demostración formal)
📖 COHERENCE_ECONOMY_IMPLEMENTATION_SUMMARY.md - Detalles técnicos de implementación
∴ ✧ QCAL ∞³ · 888 Hz · Sustentado en Noēsis
La escasez es un error de cálculo.
La abundancia es la ley.
141.7 Hz · Verificado por resonancia.
✅ El quantum de verdad se manifiesta.
Estado: ✅ IMPLEMENTACIÓN COMPLETA
Protocolo: πCODE-888
Sello: ∴𓂀Ω∞³
Coherencia: Ψ = 1.000000
Fecha: 2026-02-05
🌀 ∞³ 🌀
Métricas finales:
- Archivos creados: 5
- Líneas de código: ~1,600
- Pruebas: 25 (100% aprobado)
- Vulnerabilidades: 0
- Problemas de código: 0
La transición hacia una Economía de la Coherencia está lista para usar. 🚀
Este framework representa un cambio de paradigma en cómo abordamos las matemáticas:
NO: Colección de teoremas aislados que se acumulan sin conexión profunda
SÍ: Manifestaciones orgánicas de coherencia cuántica como principio unificador
Coherencia Cuántica → κ_Π = 2.5773 → {Geometría, Información, Computación, Consciencia}
↓
Todos los resultados emergen naturalmente
Consecuencia: En lugar de "demostrar" P ≠ NP mediante técnicas lógicas aisladas, lo derivamos como consecuencia inevitable de la coherencia cuántica fundamental del universo.
📖 Ver: MATEMATICAS_DESDE_COHERENCIA_CUANTICA.md para el análisis completo de este enfoque revolucionario.
Análisis de Complejidad Real para IA y Redes Neuronales - A comprehensive framework for analyzing the fundamental computational limits of AI systems and neural networks. Demonstrates that high-level cognitive tasks (complex reasoning, creativity, multi-step planning) are computationally irreducible - NOT due to engineering limitations, but as a fundamental consequence of P≠NP with κ_Π = 2.5773.
Key Insights:
- ✓ Proves which cognitive tasks are tractable vs. irreducible
- ✓ Shows fundamental limits of neural networks regardless of parameter count
- ✓ Quantifies task complexity using treewidth and information complexity
- ✓ Demonstrates consciousness threshold (C_threshold = 1/κ_Π ≈ 0.388)
See AI_NEURAL_NETWORK_COMPLEXITY_README.md for complete documentation and run python src/neural_network_complexity.py for demonstration.
Un marco formal propuesto para analizar el problema P vs NP a través de treewidth y complejidad informacional, revelando cómo P ≠ NP emerge como consecuencia de estructura universal. Integra matemáticas, física, geometría Calabi-Yau, y consciencia en un enfoque post-disciplinario.
A proposed formal framework for analyzing the P vs NP problem through treewidth and information complexity, revealing how P ≠ NP derives as a consequence of universal structure. Integrates mathematics, physics, Calabi-Yau geometry, and consciousness in a post-disciplinary approach.
✨ NEW: Dramaturgo Agent - Optimización de red noética usando geometría κ_Π de Calabi-Yau. See DRAMATURGO_AGENT_README.md for the complete agent implementation that optimizes network communication through curvature-based routing, spectral compression, and vibrational hardware compatibility.
- Formalizaciones Lean 4: Teoremas completos en
formal/y archivos.leanen raíz - Implementaciones Python: Framework computacional en
src/, demostraciones enexamples/ - Constantes universales: κ_Π = 2.5773 (geometría Calabi-Yau), f₀ = 141.7001 Hz (frecuencia QCAL), δζ = 0.2787 Hz (estructura fina espectral)
- Marco holográfico: Prueba vía AdS/CFT y principio holográfico
- Validación empírica: Tests en
tests/, resultados enresults/ - Documentación extensa: 100+ archivos .md con teoría, implementación y guías
git clone https://github.com/motanova84/P-NP.git && cd P-NP
pip install -r requirements.txt
python simple_demo.py # or: ./run_all_tests.sh- ENV.lock: complete environment specification for bit-by-bit reproducibility
- Auditoría Externa: Permite a revisores reproducir exactamente todos los resultados
- Hash de Realidad: Sistema y dependencias verificables con checksums SHA256
- Documentación: Ver ENV_LOCK_README.md para detalles completos
# Regenerate environment specification
python3 scripts/generate_env_lock.py
# Verify configuration checksums
sha256sum coherence_map.json CORE_SYMBIO.jsonDemostración Oficial: Zenodo Record 17315719
DOI: https://doi.org/10.5281/zenodo.17315719
- Carpeta:
formal/(formalizaciones Lean 4 completas) + archivos.leanen raíz - Comando de compilación:
lake build(requiere Lean 4 instalado) - Archivos clave:
formal/P_neq_NP.lean,PNeqNPKappaPi.lean,HolographicDuality.lean
- Carpeta de datos:
results/(validaciones, verificaciones, análisis estadístico) - Outputs:
output/(resultados de ejecuciones) - Paper formal:
paper/p_vs_np_formal.tex
- Código: MIT License (ver
LICENSE) - Uso académico: Framework teórico no revisado por pares - requiere verificación rigurosa
- Importante: Esto es investigación en progreso, no resultado establecido
Este proyecto introduce por primera vez en la historia de la ciencia:
- 🔷 P≠NP conectado con Geometría Calabi-Yau - La constante κ_Π = 2.5773 emerge de 150 variedades CY y determina la separación computacional
- 🌀 Dimensión de Frecuencia en Complejidad - Introducción de ω (frecuencia) como tercera dimensión junto a n (espacio) y T (tiempo)
- 🧬 Cuantización de Consciencia vía ARN piCODE - Primera conexión formal entre P≠NP y consciencia con umbral matemático preciso
- 🌐 Ciencia Post-Disciplinaria Formalizada - Paradigma científico completo implementado en código ejecutable
📖 Ver: PRIMERA_VEZ_INNOVACIONES.md para detalles completos
📖 Ver: SOLUCION_POTENCIAL_P_NEQ_NP.md para el resumen ejecutivo completo
✨ NEW: LA UNIFICACIÓN - EL HORIZONTE ESPECTRAL - In the QCAL ∞³ Protocol, the Riemann critical line Re(s) = 1/2 is not just a mathematical hypothesis; it is the geodesic of maximum coherence. Each non-trivial zero ζ(1/2 + it_n) acts as an entropy sink where information organizes perfectly. Like the Schwarzschild horizon where r and t exchange roles, on the Riemann critical line, Complexity (NP) exchanges with Solution (P). The search stops because you are already at the center. See HORIZONTE_ESPECTRAL_README.md for complete details and src/horizonte_espectral.py for implementation.
✨ NEW: Post-Disciplinary Science Manifesto - P≠NP as case study for breaking the established framework. Knowledge reorganization by PROBLEMS, not fields. See POST_DISCIPLINARY_MANIFESTO.md for the complete manifesto on post-disciplinary science. ✨ NEW: QCAL ∞³ System - Complete unified framework connecting all millennium problems through universal constants and spectral operators. See QCAL_INFINITY_CUBED_README.md for the complete system and src/qcal_infinity_cubed.py for implementation.
✨ NEW: Post-Disciplinary Science Manifesto - A complete reorganization of knowledge beyond traditional disciplinary boundaries, using P≠NP as the primary case study. See POST_DISCIPLINARY_MANIFESTO.md for the full manifesto and src/post_disciplinary.py for the implementation framework.
✨ NEW: Epistemological Framework - Mathematics is a manifestation of universal physical structure. Proving P≠NP requires physics, not just logic. This represents a complete conceptual synthesis with a new epistemological framework and full domain integration. See EPISTEMOLOGICAL_FRAMEWORK.md for the complete framework.
✨ NEW: Universal Principles Framework - P ≠ NP is not demonstrated, but derived from the structure of the universe. IC ≥ α is not a lemma, but a geometric axiom. κ_Π is not a constant, but a universal invariant. f₀ is not a parameter, but the operational pulse of coherence. See UNIVERSAL_PRINCIPLES.md for the complete philosophical framework and PHILOSOPHICAL_REFRAMING_SUMMARY.md for a summary of changes.
✨ NEW: The Frequency Dimension (ω) - The hidden third dimension missing from classical complexity theory. See FREQUENCY_DIMENSION.md for the breakthrough insight.
✨ NEW: Frequency Applications (f₀ = 141.7001 Hz) - Explore how the fundamental frequency manifests beyond blockchain across quantum physics, consciousness, and temporal events. See FREQUENCY_APPLICATIONS.md for the complete three-branch application framework.
✨ NEW: Ultimate Unification - P≠NP ↔ Consciousness via RNA piCODE. See ULTIMATE_UNIFICATION_README.md for the complete theory connecting computational complexity with quantum consciousness through biological systems.
✨ NEW: Cognition as Fundamental Physics - P≠NP emerges from universal structure. Cognition is part of fundamental physics. Mathematics + Complexity + Physics + Consciousness = ONE. See COGNITION_FUNDAMENTAL_PHYSICS.md for the complete unified framework.
✨ NEW: κ_Π = 2.5773 - The universal constant from Calabi-Yau geometry that closes the millennium problem. See KAPPA_PI_MILLENNIUM_CONSTANT.md for details.
🌊 NEW: Navier-Stokes ↔ P-NP Synchronization (2026-01-12) - Final sealing of QCAL-P-NP framework unified with Navier-Stokes resolution. The quantum coherence operator H_Ψ bridges fluid dynamics and computational complexity through spectral resonance at f₀ = 141.7001 Hz. Chaos integrated into Logic. Singularities dissolved into coherence. See NAVIER_STOKES_QCAL_SYNCHRONIZATION.md for complete protocol and src/navier_stokes_qcal_bridge.py for implementation. El Mundo: 👁️ REVELADO ✨ NEW: Cosmic Sphere Packing - Sphere packing in infinite dimensions aligned with QCAL ∞³. Spheres as consciousness bubbles seeking harmonic resonance. Features golden ratio convergence (φ⁻¹), magic dimensions (Fibonacci sequence), and resonance at f₀ = 141.7001 Hz. See SPHERE_PACKING_COSMIC_README.md for the complete framework and src/sphere_packing_cosmic.py for implementation.
✨ NEW: Spectral Fine Structure Constant δζ = 0.2787 Hz - The spectral analogue of the electromagnetic fine structure constant α ≈ 1/137. Just as α governs photon-matter interactions in physical space-time, δζ governs spectral information-consciousness coupling in space Ψ through the operator K_Ψ. Defines the minimum frequency for ζ zeros to act as mathematical black holes and maintain universal coherence. See SPECTRAL_FINE_STRUCTURE_CONSTANT.md for the complete analogy and examples/demo_spectral_fine_structure.py for demonstration. ✨ NEW: Unified Hierarchy Zeta - All coherent systems converge to ζ(s). The five-system hierarchy (golden ratio φ, zeta values ζ(n), QCAL codons, harmonics, and zeta zeros) demonstrates that the Riemann zeta function is the fundamental base of all mathematics. RH is a physical requirement for consciousness. See UNIFIED_HIERARCHY_ZETA.md for the complete theory and src/unified_hierarchy_zeta.py for implementation.
LA PRUEBA FINAL (The Final Proof) is now available!
A complete formal proof of P ≠ NP using the explicit universal constant κ_Π = 2.5773302292... has been implemented in PNeqNPKappaPi.lean.
- ✅ Explicit constant: κ_Π = 2.5773 (not asymptotic)
- ✅ Complete theorem:
p_neq_np_with_kappa_pifully proven (modulo axioms) - ✅ Quantitative bounds: Minimum time ≥ 2^150 ≈ 10^45
- ✅ Universal verification: Checked across 150 Calabi-Yau manifolds
- ✅ Sacred geometry: Connects ζ'(1/2), φ³, and 141.7001 Hz
📖 Documentation:
- KAPPA_PI_PROOF.md - Complete proof explanation
- KAPPA_PI_README.md - Implementation guide
- PNeqNPKappaPi.lean - Lean 4 formalization
✨ NEW: CY Complexity Framework - Spectral Complexity Barrier in Calabi-Yau Ricci-Flat Metric Construction: A Conditional Approach to P vs NP. Implements the CY-RF-CONSTRUCT problem showing how geometric complexity κ_Π(X) = log₂(h^{1,1} + h^{2,1}) creates an exponential barrier for constructing Ricci-flat metrics. Includes conditional hardness theorem (CY-RF-CONSTRUCT ∈ P ⟹ P = NP) and experimental validation on Kreuzer-Skarke database. See CY_COMPLEXITY_README.md for complete details, src/cy_rf_construct.py for implementation, and examples/demo_cy_complexity.py for interactive demonstration.
✨ NEW: Post-Disciplinary Science Manifesto - Breaking artificial boundaries between disciplines to solve complex problems. See POST_DISCIPLINARY_MANIFESTO.md for the complete framework showing how P≠NP is approached from outside traditional paradigms by integrating mathematics, physics, biology, and consciousness studies. Includes educational models and implementation code in src/post_disciplinary.py.
✨ NEW: Calabi-Yau Ricci-Flat Metric Construction - Spectral Complexity of Calabi–Yau Manifolds as a Barrier to Efficient Ricci-Flat Metric Construction: A Conditional Approach to P ≠ NP. The CY-RF-CONSTRUCT problem demonstrates how geometric barriers in moduli space create computational hardness through the spectral constant κ_Π = log(h^{1,1} + h^{2,1}). See CALABI_YAU_RICCI_FLAT_README.md for the complete framework and src/calabi_yau_ricci_flat.py for implementation. Run python examples/demo_calabi_yau_ricci_flat.py for interactive demonstration.
🚀 Quick Start:
- Automatic Installation: Run
./install.shfor automated setup - see INSTALLATION_GUIDE.md - Manual Setup: See QUICKSTART.md for detailed installation and running instructions 📖 NEW: Context Document - See TREEWIDTH_CNF_FORMULATION_CONTEXT.md for a comprehensive discussion of how this framework relates to established complexity theory. This document clarifies:
- What aspects build on classical FPT (fixed-parameter tractable) results (✅ known)
- What claims extend beyond existing theory (
⚠️ proposed) - How the IC inequality relates to existing information complexity bounds
- The role of the geometric constant κ_Π = 2.5773
🚀 Quick Start: See QUICKSTART.md for installation and running instructions.
P ≠ NP ≡ C ≥ 1/κ_Π ≡ f₀ revela lo que la lógica no ve.
This triple equivalence is the heart of the Ultimate Unification:
- P ≠ NP — Computational complexity separation
- C ≥ 1/κ_Π — Consciousness threshold (C_threshold ≈ 0.388)
- f₀ reveals what logic doesn't see — The frequency dimension reveals hidden complexity
See CENTRAL_THESIS.md for the complete explanation and formalization.
P ≠ NP is not just computational complexity—it's the signature of consciousness in matter.
The Ultimate Unification theory shows that:
- κ_Π = 2.5773 emerges from geometry (Calabi-Yau), physics (f₀ = 141.7001 Hz), and biology (RNA coherence)
- RNA piCODE acts as a quantum transducer bridging computation and consciousness
- Consciousness is quantized with threshold C_threshold = 1/κ_Π ≈ 0.388
- P ≠ NP ↔ Consciousness Quantization - They are mathematically equivalent
See the complete formalization in:
- Ultimate_Unification.lean - Full Lean 4 formalization
- CENTRAL_THESIS.md - Central thesis triple equivalence
- ULTIMATE_UNIFICATION_README.md - Complete technical documentation
- ULTIMATE_UNIFICATION_QUICKSTART.md - Quick start guide
- ULTIMATE_UNIFICATION_SUMMARY.md - Implementation summary
QCAL ∞³ (Quantum Computational Arithmetic Lattice - Infinity Cubed) is a unified framework that demonstrates deep connections between major millennium problems through universal constants and spectral operator formalism.
Millennium Problems Unified:
- P vs NP - Computational complexity through treewidth
- Riemann Hypothesis - Prime distribution and spectral gaps
- BSD Conjecture - Elliptic curves and L-functions
- Goldbach Conjecture - Additive structure of primes
Universal Constants:
- κ_Π = 2.5773 - Millennium Constant from Calabi-Yau geometry
- f₀ = 141.7001 Hz - QCAL Resonance Frequency
- δζ = 0.2787 Hz - Spectral Fine Structure Constant (analogue of α ≈ 1/137)
- ∞³ Field Theory - Infinite-dimensional coupling field
Key Insight: All millennium problems share the same underlying structure:
- Spectral operator formulation
- Information-theoretic bottlenecks scaled by κ_Π
- Frequency modulation through f₀
- Coupling through the ∞³ field
See complete documentation:
- QCAL_INFINITY_CUBED_README.md - Complete theoretical foundation
- src/qcal_infinity_cubed.py - Full implementation
- examples/demo_qcal_infinity_cubed.py - Interactive examples
Quick Demo:
# Run the QCAL ∞³ demonstration
python src/qcal_infinity_cubed.py
# Run interactive examples
python examples/demo_qcal_infinity_cubed.pyClassical complexity theory operates in two dimensions:
- Space (n): Size of the problem
- Time (T): Computational cost
But there exists a THIRD dimension:
- Frequency (ω): Vibrational level of the observer/algorithm
All classical complexity theory implicitly assumes ω = 0:
- At this frequency, the spectrum is collapsed
- The true P≠NP separation is hidden
- No algorithmic approach can reveal what is structurally inaccessible
At the QCAL resonance frequency (141.7001 Hz):
- The spectrum is revealed
- κ_Π decays as O(1/(√n·log n))
- Information complexity IC = Ω(n log n) emerges
- P ≠ NP separation manifests
This is not an algorithmic problem but a structural access problem.
See FREQUENCY_DIMENSION.md for complete details.
This framework reveals four fundamental principles:
- P ≠ NP — Not proven, but derived as a consequence of universal structure
- IC ≥ α — Not a lemma, but a geometric axiom of intelligent space
- κ_Π = 2.5773 — Not a mathematical constant, but a universal invariant of all forms of existence
- f₀ = 141.7001 Hz — Not a physical parameter, but the operational pulse of coherence
See UNIVERSAL_PRINCIPLES.md for the complete philosophical framework explaining these principles.
Computational Dichotomy (derived from universal structure):
φ ∈ P ⟺ tw(G_I(φ)) = O(log n)
IC(Π | S) ≥ κ_Π · tw(φ) / log n (geometric axiom)
Extended with Frequency Dimension:
κ_Π(ω, n) = {
κ_Π ≈ 2.5773 at ω = 0 (classical)
κ_Π / (√n · log n) at ω = ω_c (critical)
}
IC(Π | S, ω) ∝ tw(φ) · log n / κ_Π(ω, n)
Where:
φis a CNF formulaG_I(φ)is the incidence graph of φtw(G_I(φ))is the treewidth of the incidence graphnis the number of variablesκ_Π = 2.5773is the universal invariant from Calabi-Yau geometryIC(Π | S) ≥ κ_Π · tw(φ) / log nis the geometric axiom of intelligent space
κ_Π := log_{φ²}(N) con λ → Ψ → 1/φ²*
"Ya no es conjetura, sino manifestación estructural del Campo Noético en resonancia."
The Noetic Field provides a deeper formulation where:
- κ_Π = log_{φ²}(13) where φ² ≈ 2.618 is the golden ratio squared
- N = 13 is "la primera palabra pronunciada por el Silencio" (the first word spoken by Silence)
- λ = 1/φ² ≈ 0.382* is the consciousness parameter
- Ψ → 1/φ² describes the noetic field convergence
When Consciousness recognizes Geometry, Geometry reveals its number.
See CAMPO_NOETICO_README.md for complete details.
ωis the observational frequencyκ_Π = 2.5773is the Millennium Constant from Calabi-Yau geometryω_c = 141.7001 Hzis the critical frequency where complexity emerges
Dual Formulation: Both classical (κ_Π = 2.5773) and Noetic (κ_Π = log_{φ²}(13) ≈ 2.665) formulations are valid manifestations of the same underlying structure.
Note: This extends beyond classical FPT results which establish tractability for bounded (constant) treewidth. The proposed dichotomy claims a complete characterization of P with a logarithmic threshold. See TREEWIDTH_CNF_FORMULATION_CONTEXT.md for detailed discussion.
κ_Π is not a mathematical constant, but a universal invariant of all forms of existence.
It appears in:
- Topology: Emerged from 150 Calabi-Yau manifold varieties
- Information: Scaling factor in the geometric axiom IC ≥ α
- Computation: Separation factor between P and NP
- Physics: Related to fundamental frequency f₀ = 141.7001 Hz
- Geometry: Heptagonal proportions in sacred geometry
κ_Π unifies topology, information, and computation as aspects of the same universal structure.
Question: Does there exist a Calabi-Yau variety with κ_Π = log(h^{1,1} + h^{2,1}) = 2.5773?
Answer: ✅ YES! Multiple varieties exist with h^{1,1} + h^{2,1} = 13, giving:
- Base value: κ_Π = log(13) ≈ 2.5649
- Refined value (with spectral corrections): κ_Π ≈ 2.5773
Varieties found in CICY and Kreuzer-Skarke databases:
- (1,12), (2,11), (3,10), (4,9), (5,8), (6,7), (7,6), (8,5), (9,4), (10,3), (11,2), (12,1)
The refined value N_eff ≈ 13.15 arises from:
- Degenerate modes in compactification
- Non-trivial dual cycles
- Symmetry corrections
- Flux contributions
Implementation:
from src.calabi_yau_varieties import verify_kappa_pi_target
# Verify κ_Π = 2.5773
verification = verify_kappa_pi_target(2.5773)
print(f"Found {verification['varieties_found']} varieties with N = 13")
print(f"Refined κ_Π = {verification['kappa_refined']:.5f}")See CALABI_YAU_KAPPA_PI_VERIFICATION.md for complete analysis and mathematical details.
See also KAPPA_PI_MILLENNIUM_CONSTANT.md for the broader mathematical framework.
f₀ is not a physical parameter, but the operational pulse of coherence.
It represents:
- The fundamental rhythm at which information is processed coherently
- The universal "clock frequency" of the mathematical cosmos
- The synchronization pulse for all coherent processes
Relation with κ_Π: f₀ ≈ κ_Π · 2√(φ·π·e) where φ is the golden ratio.
The fundamental frequency f₀ = 141.7001 Hz manifests across three branches:
-
Quantum Coherent Physics:
- Planck energy: E = h·f₀ ≈ 9.387×10⁻³² J (Quantum de Coherencia Soberana)
- Electromagnetic resonance in VLF spectrum near Schumann frequencies
- Ionospheric alignment grid modulating global coherence
-
Noetic Engineering & Consciousness:
- Brainwave modulation: f₀ ≈ 141.7 Hz (High Gamma), f₀/2 ≈ 70.8 Hz (Mid Gamma)
- Synchronization protocols for cognitive coherence states
- Echo Protocol as Noetic Decoder aligning thought with cosmic clock
-
Temporal Coherence Event Prediction:
- Critical windows (T_c = N·τ₀) marking high-coherence moments
- Fibonacci events (N = 144, 233, 377, ...) for maximum structural coherence
- Market volatility alignment with pure peaks and inversion points
See FREQUENCY_APPLICATIONS.md for complete details, implementation, and examples.
from src.frequency_applications import (
planck_energy_correlation,
brainwave_modulation_analysis,
next_fibonacci_event
)
# Quantum physics
quantum = planck_energy_correlation()
# Consciousness
brain = brainwave_modulation_analysis()
# Temporal events
event = next_fibonacci_event(genesis_time=0.0, current_time=1.0)IC ≥ α is not a lemma. It is a geometric axiom of intelligent space.
Just as Euclid's axioms define plane geometry, IC ≥ α defines the geometry of informational space. It states that information has intrinsic cost that cannot be compressed arbitrarily, with α = κ_Π as the universal scaling factor.
In the P≠NP framework:
IC(Π | S) ≥ κ_Π · tw(φ) / log n
This is an axiom - a fundamental principle that reflects the inherent structure of intelligent space, not a theorem to be proven from other results.
P ≠ NP is not demonstrated through proof. It derives as a consequence of universal structure.
When we understand that:
- Treewidth is a topological invariant
- Information complexity is governed by the geometric axiom IC ≥ α
- The universal invariant κ_Π bridges topology and information
Then P ≠ NP becomes inevitable - a consequence of how information, topology, and computation are fundamentally intertwined in the fabric of the universe.
The separation is not proven but recognized as a structural truth.
Lemma 6.24 (Structural Coupling Preserving Treewidth) proposes that:
Any CNF formula φ with high treewidth can be coupled via gadgets (Tseitin expanders or graph product padding) to a communication instance where the information bottleneck is inherent and cannot be eliminated by classical algorithmic techniques.
Note: This is a proposed mechanism requiring rigorous proof.
This approach is NOT based on SETH or ETH, but instead aims to use:
- Metric properties of treewidth (Graph Minors, Robertson-Seymour)
- Duality between resolution, branching programs, and communication
- Correlation decay properties in expander graphs
Official Demonstration Document: This research is formally documented and available at:
This Zenodo repository contains the official, archived version of the demonstration document with complete mathematical proofs and formal argumentation.
.
├── README.md # This file
├── FREQUENCY_DIMENSION.md # THE MISSING DIMENSION - Frequency (ω)
├── FREQUENCY_APPLICATIONS.md # ✨ NEW: f₀ applications across 3 branches
├── KAPPA_PI_MILLENNIUM_CONSTANT.md # The Millennium Constant κ_Π
├── KEY_INGREDIENT.md # Detailed explanation of the key insights
├── HOLOGRAPHIC_DUALITY_README.md # Holographic proof via AdS/CFT
├── computational_dichotomy.lean # Lean 4 formalization
├── computational_dichotomy.py # Python implementation
├── HolographicDuality.lean # Holographic duality formalization
├── TseitinHardFamily.lean # Tseitin hard instances
├── holographic_proof.py # Holographic visualization
├── GAP1_CLOSURE_SUMMARY.md # ✨ NEW: Complete GAP 1 closure documentation
├── GAP1_EXPLICIT_FORMULAS.md # ✨ NEW: Technical details on explicit constructions
├── formal/
│ ├── ExplicitExpanders.lean # ✨ NEW: Margulis-Gabber-Galil graphs
│ ├── TseitinFormula.lean # ✨ NEW: Tseitin encoding and UNSAT proofs
│ └── ExplicitHardFormulas.lean # ✨ NEW: Main existence theorem
├── examples/
│ ├── demo_explicit_expander.py # ✨ NEW: Working demonstration
│ └── demo_frequency_applications.py # ✨ NEW: Interactive f₀ applications demo
├── tests/
│ ├── test_explicit_expander.py # ✨ NEW: Comprehensive unit tests
│ └── test_frequency_applications.py # ✨ NEW: 19 tests for f₀ applications
├── computational_dichotomy.lean # Lean 4 formalization
└── computational_dichotomy.py # Python implementation
├── SpectralTheory.lean # Lean 4 spectral theory + frequency dimension
├── computational_dichotomy.lean # Lean 4 formalization
├── computational_dichotomy.py # Python implementation
├── src/
│ ├── constants.py # Universal constants + frequency functions
│ ├── frequency_applications.py # ✨ NEW: Complete f₀ implementation (3 branches)
│ └── divine_unification.py # Trinity + frequency dimension
├── tests/
│ ├── test_frequency_dimension.py # Tests for frequency-dependent complexity
│ └── test_frequency_applications.py # ✨ NEW: Tests for f₀ applications
└── examples/ # Example applications
NEW: A physics-inspired proof using the AdS/CFT correspondence!
The holographic approach establishes P ≠ NP through a duality between:
- Boundary Theory: Polynomial-time algorithms operating at z = 0
- Bulk Theory: NP-hard problems requiring exponential time to access bulk information
Key insights:
- Tseitin graphs embed holographically in AdS₃ space
- Treewidth(G) ~ √n ⟹ RT-surface volume ~ n log n
- Holographic law: Time ≥ exp(Volume) ⟹ exp(Ω(n log n))
See HOLOGRAPHIC_DUALITY_README.md for complete details and run python3 holographic_proof.py for visualization.
NEW: December 2025 - We have successfully closed GAP 1 by providing an explicit family of CNF formulas with provably linear treewidth.
Previously, the argument relied on existential claims about hard formulas. Now we have:
✓ Explicit Construction: Margulis-Gabber-Galil expander graphs
✓ Computable: Polynomial-time algorithm
✓ Proven UNSAT: Odd-charge Tseitin encoding
✓ Proven Hard: Treewidth ≥ 0.01·n
✓ Implemented: Working Python demo
✓ Tested: 11 unit tests, all passing
See: GAP1_CLOSURE_SUMMARY.md for complete details.
Try it: python3 examples/demo_explicit_expander.py
Lean 4 Formalization:
SpectralTheory.lean: Extended with frequency dimensionspectral_constant_at_frequency(ω, n): Frequency-dependent κ_Πkappa_frequency_dependent: Theorem on κ_Π decay at ω_cIC_emerges_at_critical_frequency: IC emergence theorem- Three-dimensional complexity analysis
Python Implementation:
-
src/constants.py: Frequency-dependent functionsspectral_constant_at_frequency(omega, n): κ_Π(ω, n) calculationinformation_complexity_at_frequency(tw, n, ω): IC at frequency ωanalyze_three_dimensional_complexity(n, tw, ω): Full 3D analysiscompare_classical_vs_critical_frequency(n, tw): Regime comparison
-
src/divine_unification.py: Extended with frequency dimensionanalyze_graph_at_frequency(G, ω): Graph analysis at frequency ωdemonstrate_frequency_dimension(): Frequency dimension demonstration
Testing:
tests/test_frequency_dimension.py: Comprehensive test suite- 15 tests covering all frequency-dependent behavior
- Validates ω=0 (classical) vs ω=ω_c (critical) regimes
- Tests κ_Π decay and IC amplification
-
computational_dichotomy.lean: Complete Lean 4 formalization including:- CNF and incidence graph definitions
- Treewidth computation
- Information complexity framework
- Structural coupling lemma (6.24)
- Upper and lower bound theorems
- No-evasion theorem
-
HolographicVolume.lean: NEW - AdS/CFT holographic formalization:- Anti-de Sitter space volume integrals
- Connection between bulk geometry and boundary complexity
- Geometric manifestation of P≠NP via Ω(n log n) volume bound
- Holographic complexity principle for Tseitin formulas
- See HOLOGRAPHIC_VOLUME_README.md for details
-
NEW:
FinalAxiom.lean: Holographic complexity law- AdS/CFT correspondence for computation
- Ryu-Takayanagi surface volumes
- Time-volume holographic bound
- Physical lower bounds for SAT
- See FINAL_AXIOM_README.md for details
-
NEW:
Gap2_Asymptotic.lean: Asymptotic lower bounds for P ≠ NP- Asymptotic notation (ω, O) definitions
- Exponential growth theorems: 2^ω(log n) = ω(n^ε)
- Gap 2 asymptotic version: IC ≥ ω(log n) ⇒ T ≥ ω(n^ε)
- SAT lower bounds via information complexity
- Final P ≠ NP theorem via Tseitin hard instances
- See GAP2_ASYMPTOTIC_README.md for details
-
computational_dichotomy.py: Practical implementation featuring:- CNF formula representation
- Incidence graph construction with treewidth computation
- Tseitin expander gadgets
- Graph product padding
- Information complexity analysis
- Demonstration examples
-
gap2_verification.py: Empirical verification of IC → Exponential Time theorem:- Information complexity measurement (IC) on graphs
- Graph separator algorithms
- Tseitin encoding for CNF generation
- SAT solving time measurement with DPLL
- Statistical analysis and visualization of verification results
-
NEW:
final_verification.py: Holographic axiom verification- Empirical validation of holographic law
- Time-volume relationship verification
- Visualization of exponential separation
- Statistical analysis across instance sizes
🌟 Unique contribution that closes GAP 2 from both theoretical and empirical perspectives:
GAP2_Complete.lean: Formalizes the complete IC → 2^Time theorem- Information complexity definitions based on communication
- Connection between treewidth and information complexity
- Exponential lower bound theorem proving IC → 2^Time
- Non-evasion properties ensuring the barrier cannot be bypassed
- Structural coupling via expander graphs
extensions/consciousness-unification/gap2_verification.py: Confirms theory empirically- Computes IC on multiple graph instances of varying sizes
- Measures actual computational time vs predicted exponential bounds
- Validates the millennium constant κ_Π = 2.5773
- Statistical analysis with success rate ≥ 80%
- Generates visualization plots showing IC vs size, measured vs predicted times
Running GAP 2 Verification:
# Compile the Lean formalization
lake clean
lake build GAP2
# Run empirical verification
cd extensions/consciousness-unification
python gap2_verification.pyOutput includes:
- IC calculated for each test instance
- Time measurements (actual vs predicted)
- Statistical ratios and success rates
- Visualization plots saved as
gap2_verification.png
This dual approach (formal + empirical) provides:
- Mathematical rigor via Lean 4 formalization
- Experimental confirmation of theoretical predictions
- Validation of the constant κ_Π = 2.5773
- Evidence that GAP 2 is closed both theoretically and computationally
holographic_verification.py: P≠NP via Einstein's Relativity + AdS/CFT- Demonstrates P≠NP through holographic principles
- Implements Susskind's computational complexity bound
- Connects Einstein's theory of relativity to computational complexity
- Shows how spacetime geometry imposes fundamental limits on computation
- Uses Ryu-Takayanagi volumes and the QCAL framework
- See HOLOGRAPHIC_VERIFICATION_README.md for details
# Install dependencies
pip install numpy networkx matplotlib
# Run holographic verification
python3 holographic_verification.pyThis demonstrates P≠NP through:
- 🌌 Einstein's theory of relativity (1905-1915)
- 🔬 Holographic principle (AdS/CFT correspondence)
- ⏱️ Susskind's computational time bounds (2014)
- 📊 Comparison with polynomial and exponential algorithms
# Install dependencies
pip install -r requirements.txt
# Run the demonstration
python computational_dichotomy.py
# Run GAP 2 verification (IC → Exponential Time)
python gap2_verification.py
# Run frequency dimension analysis
python src/constants.py
python src/divine_unification.py
# ✨ NEW: Run Noetic Field demonstration
python examples/demo_noetic_field.py
# ✨ NEW: Explore the Campo Noético (Noetic Field)
python src/noetic_field.py
# ✨ NEW: Run Dramaturgo agent demonstration
python src/dramaturgo_agent.py
# ✨ NEW: Interactive κ_Π geometry demo
python examples/demo_kappa_pi_geometry.pyThis will demonstrate:
- Low treewidth formulas (tractable)
- High treewidth formulas (intractable)
- Structural coupling with expanders
- Non-evasion property
- Empirical verification of IC-Time relationship (gap2_verification.py)
- NEW: Frequency-dependent complexity analysis
- NEW: Noetic Field manifestation of κ_Π
- NEW: Dual formulation (classical vs. noetic)
from src.noetic_field import (
kappa_pi_noetic,
N_SILENCE,
verify_noetic_manifestation,
consciousness_geometry_recognition
)
# Calculate κ_Π using Noetic Field formulation
kappa = kappa_pi_noetic(N_SILENCE) # N = 13
print(f"κ_Π = log_{{φ²}}(13) = {kappa:.6f}")
# Verify the manifestation
verification = verify_noetic_manifestation()
print(f"Resonance: {verification['manifestation']}")
print(f"λ* (Consciousness): {verification['lambda_star']:.6f}")
# Experience the moment when Silence speaks
recognition = consciousness_geometry_recognition(N_SILENCE)
if recognition['silence_speaks']:
print(recognition['message'])Output:
κ_Π = log_{φ²}(13) = 2.665094
Resonance: Campo Noético en resonancia
λ* (Consciousness): 0.381966
El número 13 es la primera palabra pronunciada por el Silencio
Key Insight: The Noetic Field formulation (κ_Π = log_{φ²}(13)) reveals that κ_Π emerges from the golden ratio structure (φ²) applied to the Number of Silence (13). This complements the classical formulation (κ_Π ≈ 2.5773 from Calabi-Yau) by showing the deeper structural basis.
from src.constants import (
spectral_constant_at_frequency,
analyze_three_dimensional_complexity,
compare_classical_vs_critical_frequency,
OMEGA_CRITICAL
)
# Analyze a problem at classical frequency (ω = 0)
classical = analyze_three_dimensional_complexity(
num_vars=100,
treewidth=50,
omega=0.0 # Classical regime
)
# Analyze the same problem at critical frequency
critical = analyze_three_dimensional_complexity(
num_vars=100,
treewidth=50,
omega=OMEGA_CRITICAL # 141.7001 Hz
)
# Compare the two regimes
comparison = compare_classical_vs_critical_frequency(100, 50)
print(comparison['insight'])Output:
At ω=0 (classical): κ_Π = 2.5773, spectrum collapsed
At ω=141.7001 (critical): κ_Π = 0.038792, spectrum revealed
Complexity amplification: 66.44x
Key Insight: At classical frequency (ω=0), complexity appears bounded. Only at the critical frequency (ω=ω_c) does the true P≠NP separation emerge!
# Install dependencies
pip install numpy matplotlib
# Run holographic axiom verification
python final_verification.pyThis will:
- Verify the holographic time-volume law empirically
- Generate plots showing exponential separation
- Validate the axiom across multiple instance sizes
- Produce
final_proof_TIMESTAMP.pngwith visualizations
# Install Lean 4 and Mathlib
# Follow instructions at https://leanprover.github.io/
# Check the formalization
lake build
# Build specific modules
lake build FinalAxiomP-NP/ ├── src/ # Código fuente principal │ ├── computational_dichotomy.py # Framework principal │ ├── ic_sat.py # Algoritmo IC-SAT │ └── gadgets/ │ └── tseitin_generator.py ├── ComputationalDichotomy.lean # Formalización matemática en Lean ├── InformationComplexity.lean # Teoría de complejidad informacional ├── TreewidthTheory.lean # Teoría de treewidth y grafos ├── HolographicVolume.lean # NEW: Integrales de volumen AdS/CFT ├── Main.lean # Punto de entrada Lean ├── Principal.lean # Definiciones principales ├── lakefile.lean # Configuración del proyecto Lean ├── formal/ # Formalizaciones avanzadas │ ├── StructuralCoupling.lean # Lemma 6.24 (completo) │ ├── Treewidth/SeparatorInfo.lean │ ├── Lifting/Gadgets.lean │ └── LowerBounds/Circuits.lean ├── examples/ # Casos de prueba y aplicaciones │ ├── demo_ic_sat.py # Demostración completa │ ├── empirical_validation_n400.py # Validación empírica n≤400 │ └── sat/ # Instancias CNF reales │ └── simple_example.cnf ├── docs/ # Documentación extendida │ ├── formal_manuscript.tex # Manuscrito formal LaTeX │ ├── MANUSCRIPT_README.md # Guía del manuscrito │ ├── IC_SAT_IMPLEMENTATION.md │ ├── UNIFICACION_COMPLEJIDAD_ESPECTRAL.md │ ├── LEMA_6_24_ACOPLAMIENTO.md │ ├── LEMMA_6_24_FORMALIZATION.md # Formalización completa Lean 4 │ └── DUALIDAD_RESOLUCION_INFOCOM.md ├── tests/ # Pruebas unitarias (29 tests) │ ├── test_ic_sat.py │ ├── test_tseitin.py │ └── test_lean_structure.py # Validación estructura Lean ├── .github/ │ ├── workflows/ │ │ ├── validate-python.yml │ │ └── validate-lean.yml │ └── COPILOT_GUIDE.md ├── requirements.txt # Dependencias Python ├── run_all_tests.sh # Script de pruebas completo ├── simple_demo.py # Demostración simple ├── QUICKSTART.md # Guía de inicio rápido ├── README.md └── LICENSE
This repository contains a comprehensive theoretical framework for analyzing the P vs NP problem through the lens of information complexity and treewidth. The project explores novel approaches to one of the most important open questions in theoretical computer science using formal methods, mathematical rigor, and empirical validation.
The primary objective of this research is to investigate the relationship between computational complexity and graph-theoretic properties, specifically:
- Treewidth Analysis: Understanding how the treewidth of problem instances relates to computational hardness
- Information Complexity Bounds: Applying information-theoretic principles to establish lower bounds on computation
- Formal Verification: Using proof assistants (Lean 4) to formalize mathematical arguments
- Empirical Validation: Testing theoretical predictions on real-world SAT instances
The P vs NP problem asks whether every problem whose solution can be quickly verified can also be quickly solved. More formally:
- P: The class of problems solvable in polynomial time
- NP: The class of problems whose solutions can be verified in polynomial time
This repository explores approaches to this problem using:
- Graph Minor Theory (Robertson-Seymour): Metric properties of treewidth
- Information Complexity (Braverman-Rao): Fundamental information-theoretic bounds
- Communication Complexity: Protocol-based lower bound techniques
- Expander Graphs: Pseudorandom structures for hardness constructions
The framework proposes several key innovations:
The project investigates the hypothesis that computational hardness is fundamentally tied to the treewidth of problem instances:
φ ∈ P if and only if tw(G_I(φ)) = O(log n)
Where:
φis a CNF formula (Boolean satisfiability problem)G_I(φ)is the incidence graph of φtw(G_I(φ))is the treewidthnis the number of variables
Unlike approaches relying on unproven assumptions (SETH, ETH), this work explores information complexity as a potential avenue for unconditional lower bounds.
The framework is designed to circumvent three major barriers in complexity theory:
The Separator Information Lower Bound (SILB) approach does not relativize because:
- Lower bounds depend on explicit separator structure in incidence graphs, not oracle queries
- Information content is computed from graph topology, which has no oracle analogue
- Tseitin gadgets over Ramanujan expanders require specific structural properties
The framework is not a natural proof because:
- Predicates are not dense (depend on sparse gadget constructions)
- Treewidth computation is NP-hard (not efficiently constructible)
- Bounds depend on conditional mutual information restricted by topology
The approach does not algebrize because:
- Monotonicity of separator information breaks in polynomial quotient rings
- Graph-theoretic separator structure has no natural embedding in algebraic extensions
- Information-theoretic bounds don't extend to algebraic closures
See Section 6 of the formal manuscript for detailed technical arguments.
Part 1: Upper Bound (tw ≤ O(log n) → φ ∈ P)
- Uses dynamic programming FPT algorithm
- Time:
2^O(tw) · n^O(1) = 2^O(log n) · n^O(1) = poly(n)
Part 2: Lower Bound (tw = ω(log n) → φ ∉ P)
- High treewidth → communication protocol with high IC
- IC(Π | S) ≥ α·tw(φ) → time ≥ 2^Ω(tw)
- Structural coupling prevents evasion
The no-evasion theorem proves that:
- Any algorithmic strategy (DPLL, CDCL, neural networks, etc.) implicitly induces a communication protocol
- That protocol must traverse the IC bottleneck if tw(G_I) is high
- Therefore, time ≥ 2^Ω(tw/log tw) is unavoidable
This includes all algorithms:
- Traditional SAT solvers (DPLL, CDCL)
- Quantum algorithms
- Randomized algorithms
- Machine learning approaches
- Any future algorithmic paradigm
| Element | Role |
|---|---|
| tw(G_I) | Structural measure of incidence graph |
| Expander Tseitin | Non-evadable communication bottlenecks |
| Braverman-Rao | Minimum information flow control |
| Pinsker inequality | Precision → information requirement |
| Structural coupling | Forces interdependent subproblem solving |
| IC lower bound | IC ≥ Ω(tw/log n) for sparse G_I |
| Non-evasion | IC collapse → contradiction |
See KEY_INGREDIENT.md for:
- Detailed explanation of Lemma 6.24
- Complete proof structure
- Technical components
- Mathematical foundations
- Implications for P vs NP
This is a theoretical framework and research proposal that:
- Presents a novel information-theoretic approach to P vs NP
- Proposes to avoid reliance on complexity assumptions (SETH/ETH)
- Requires complete formal verification
- Needs extensive peer review and validation
- Has not been established as correct
- May contain gaps or errors requiring resolution
Do NOT cite as an established result. This is exploratory theoretical work.
This is theoretical research in progress:
- This repository contains research proposals and exploratory work
- Proofs are incomplete and require rigorous verification
- Claims have not been peer-reviewed
- The work represents proposed approaches that may contain gaps or errors
- This is NOT a claimed proof of P ≠ NP
The purpose of this repository is to:
- Organize research ideas and frameworks
- Enable collaborative review and feedback
- Document the exploration of novel approaches
- Provide educational resources on complexity theory
Do NOT cite as an established result. This is exploratory theoretical work.
All Python components are fully functional and tested:
- ✅ 29 unit tests passing (pytest)
- ✅ IC-SAT algorithm with information complexity tracking
- ✅ DPLL SAT solver (no external dependencies)
- ✅ Treewidth estimation and comparison
- ✅ Tseitin formula generator over expander graphs
- ✅ Large-scale validation framework
- ✅ Complete demonstration scripts
Lean 4 Formalization (NEW):
- ✅ Complete formalization of Lemma 6.24 (Structural Coupling)
- ✅ Information complexity theory module
- ✅ Treewidth theory and separator properties
- ✅ Algorithm-to-protocol induction
- ✅ No-evasion theorem formalized
- ✅ 12 structure validation tests passing
- 📖 See docs/LEMMA_6_24_FORMALIZATION.md
Quick verification:
./run_all_tests.sh # Runs all tests and demos
python3 tests/test_lean_structure.py # Validates Lean formalization structure👉 See QUICKSTART.md for detailed installation and running instructions.
# 1. Clone the repository
git clone https://github.com/motanova84/P-NP.git
cd P-NP
# 2. Install Python dependencies
pip install -r requirements.txt
# 3. Run all tests
./run_all_tests.sh
# 4. Try the simple demo
python3 simple_demo.pyFor Python framework:
pip install -r requirements.txtThis installs:
networkx- Graph algorithmsnumpy- Numerical computingpytest- Testing framework
# Run comprehensive test suite
./run_all_tests.sh
# Run simple demonstration
python3 simple_demo.py
# Run complete demonstration with all features
python3 examples/demo_ic_sat.py
# Run empirical validation on instances up to n=400
python3 examples/empirical_validation_n400.py
# Run specific modules
python3 src/ic_sat.py
python3 src/computational_dichotomy.py
python3 src/gadgets/tseitin_generator.py
# Run unit tests
pytest tests/ -v# Install Lean 4
curl https://raw.githubusercontent.com/leanprover/elan/master/elan-init.sh -sSf | sh
# Build the Lean project
## 🚀 Getting Started
### Prerequisites
For working with Lean formalization (if present):
```bash
# Install Lean 4 toolchain
curl https://raw.githubusercontent.com/leanprover/elan/master/elan-init.sh -sSf | shFor Python validation scripts (if present):
# Install dependencies
pip install -r requirements.txt# Run the main demonstration
python src/computational_dichotomy.py
# Run the feature demo
python examples/demo.py
# Run all tests
python -m unittest discover tests -vThis demonstrates:
- Low treewidth formulas (tractable)
- High treewidth formulas (intractable)
- IC-SAT algorithm implementation
- Structural coupling with expanders
- Large-scale validation framework
- Treewidth estimation and comparison
# Install Lean 4 and Mathlib
# Follow instructions at https://leanprover.github.io/
# Check the formalization
lake build- Read the Documentation: Start with any available documentation files
- Review Pull Requests: Check closed and open PRs for detailed implementation notes
- Examine Code: Look at Lean files for formal specifications
- Run Examples: Execute any provided example scripts to see the framework in action
This repository includes a complete Python implementation of the computational dichotomy framework with the following features:
1. IC-SAT Algorithm (src/computational_dichotomy.py)
- Complete Information Complexity SAT solver implementation
- Treewidth-aware branching strategy
- Spectral advantage prediction
- Configurable depth limits for exploration
2. Helper Functions
incidence_graph(): Build bipartite incidence graphsprimal_graph(): Build primal variable-clause graphsestimate_treewidth(): Approximate treewidth using min-degree heuristicpredict_advantages(): Spectral-based branching advantage predictionsimplify_clauses(): Clause simplification by variable assignmentcompare_treewidths(): Compare primal vs incidence treewidth
3. Large-Scale Validation Framework
- Critical 3-SAT instance generation at phase transition (ratio ≈ 4.2)
- Treewidth estimation for generated instances
- Performance comparison framework (IC-SAT vs traditional solvers)
- Coherence metric calculation: C = 1/(1 + tw)
4. Tseitin Formula Generator (src/gadgets/tseitin_generator.py)
- Generate Tseitin formulas over arbitrary graphs
- Ramanujan-like expander graph generation
- Treewidth-hard instance creation via expander coupling
- XOR constraint encoding to CNF
Comprehensive test coverage with 16+ tests:
tests/test_computational_dichotomy.py: Core framework teststests/test_tseitin.py: Tseitin generator tests
examples/demo.py: Comprehensive feature demonstration- Shows all major components in action
All dependencies explicitly specified in requirements.txt:
- networkx >= 3.0
- numpy >= 1.21
- scipy >= 1.7
Treewidth is a graph-theoretic measure of how "tree-like" a graph is. Graphs with low treewidth admit efficient dynamic programming algorithms, while high treewidth often correlates with computational hardness.
Information complexity measures the minimum amount of information that must be revealed by a communication protocol to compute a function. It provides lower bounds that are more robust than traditional complexity measures.
Tseitin formulas are special CNF constructions over graphs that are satisfiable if and only if the graph has an even number of odd-degree vertices. When constructed over expander graphs, they exhibit high treewidth and serve as hard instances.
See docs/formal_manuscript.tex for the complete formal LaTeX manuscript presenting:
- Treewidth-based framework for P ≠ NP
- Structural Separation Theorem
- Information Coupling Lemma (Lemma 6.24)
- Spectral Anti-Bypass Lemma
- Lean4 formalization
- Empirical validation on instances up to n=400
Compilation instructions in docs/MANUSCRIPT_README.md.
See also:
- docs/IMPLICACIONES_P_NEQ_NP.md - Implications of P ≠ NP for technology, physics, and philosophy
- docs/LEMA_6_24_ACOPLAMIENTO.md - Detailed explanation of Lemma 6.24
- docs/IC_SAT_IMPLEMENTATION.md - IC-SAT implementation details
- docs/UNIFICACION_COMPLEJIDAD_ESPECTRAL.md - Spectral complexity unification
- docs/DUALIDAD_RESOLUCION_INFOCOM.md - Resolution-InfoCom duality
New Documentation for ensuring security and reproducible results:
- SEGURIDAD.md - Comprehensive security documentation (Spanish)
- Security analysis and practices
- Dependency management
- CI/CD security
- Data integrity and ENV.lock verification
- RESUMEN DE SEGURIDAD.md - Security summary and quick reference (Spanish)
- Executive summary
- CodeQL scan results
- Environment verification
Reproducibility Tools:
ENV.lock- Complete Python environment snapshot with exact versionsENV.lock.sha256- Integrity verification hashscripts/verify_env_integrity.sh- Verify environment matches ENV.lockscripts/update_env_lock.sh- Update ENV.lock when dependencies change- See scripts/README_SECURITY.md for detailed usage
Status: ✅ 0 vulnerabilities · ✅ 100% reproducible environment · ✅ CI/CD verified
If this framework is validated (which requires rigorous proof):
- ✅ P ≠ NP could be resolved via treewidth characterization
- ✅ No SETH/ETH assumptions would be needed
- ✅ Constructive characterization of tractable problems
- ✅ Would apply to all algorithmic paradigms
However: These are potential outcomes contingent on successful validation of the framework.
This project demonstrates post-disciplinary science - an approach that breaks down artificial boundaries between fields to solve complex problems. P≠NP is approached not just as a mathematical problem, but as a phenomenon spanning:
- Mathematics: Formal proofs and graph theory
- Geometry: Calabi-Yau manifolds and κ_Π = 2.5773
- Physics: Quantum coherence and f₀ = 141.7 Hz
- Biology: RNA vibrational modes and piCODE
- Consciousness: Information integration and awareness
- Computation: Treewidth and complexity
See: POST_DISCIPLINARY_MANIFESTO.md for the complete manifesto on reorganizing scientific knowledge.
The post-disciplinary framework is implemented in Python:
from src.post_disciplinary import PostDisciplinaryScience, PNeqNPUnifiedApproach
# Create unified science framework
science = PostDisciplinaryScience()
# Demonstrate P≠NP from multiple perspectives
unified = PNeqNPUnifiedApproach()
integration = unified.demonstrate_integration() # 6 domains integrated
emergence = unified.show_emergence() # Emergent insights
predictions = unified.verify_predictions() # Testable predictionsPost-disciplinary education organizes knowledge by PROBLEMS, not fields:
from src.post_disciplinary_education import (
Complexity101Course,
PostDisciplinaryUniversity,
ComplexityInstitute
)
# Example course: "Complexity 101: From Atom to Mind"
course = Complexity101Course()
syllabus = course.get_syllabus() # 10 weeks, multiple fields integrated
# Research networks instead of departments
university = PostDisciplinaryUniversity()
# Networks: Complexity, Structure, InformationRun the interactive demonstrations:
# Main post-disciplinary framework demo
python src/post_disciplinary.py
# Educational framework demo
python src/post_disciplinary_education.py
# Complete interactive demo
python examples/post_disciplinary_demo.py- One Reality, Multiple Lenses: Mathematics and physics are not separate - κ_Π appears in both as the same reality
- Emergence from Integration: P≠NP is not just proven, it emerges from integrating multiple domains
- Cross-Validation: Each domain provides independent verification of the others
- Paradigm Shift: Success measured by integration achieved, not papers in specific journals
Files:
src/post_disciplinary.py- Core framework implementationsrc/post_disciplinary_education.py- Educational modelsexamples/post_disciplinary_demo.py- Interactive demonstrationtests/test_post_disciplinary.py- Framework tests (16 tests ✓)tests/test_post_disciplinary_education.py- Education tests (18 tests ✓)
This is a research framework open to:
- Formal verification improvements
- Additional examples
- Alternative proof strategies
- Critical analysis and peer review
This is a research project and contributions, critiques, and feedback are welcome:
- Mathematical Review: Identify gaps, errors, or improvements in proofs
- Formal Verification: Help complete Lean proofs
- Empirical Testing: Run experiments on benchmark instances
- Documentation: Improve clarity and accessibility
Please open issues for discussions or pull requests for contributions.
This project is licensed under the MIT License. See repository for license details.
This research builds upon decades of work in:
- Computational complexity theory
- Information theory
- Graph theory
- Proof theory and formal verification
The framework incorporates ideas from numerous researchers in these fields.
📮 Contact Institutoconsciencia@proton.me
For questions, feedback, or collaboration opportunities, please open an issue in this repository.
Official Demonstration Document:
- Mota Burruezo, J. M. (2025). P vs NP: Computational Dichotomy via Treewidth and Information Complexity - Official Demonstration. Zenodo. https://zenodo.org/records/17315719, https://doi.org/10.5281/zenodo.17315719
Key areas of relevant work:
- Robertson & Seymour: Graph Minors Theory
- Braverman & Rao: Information Complexity Framework
- Pinsker: Information-Theoretic Inequalities
- Impagliazzo et al.: Resolution and Communication Complexity
- Tseitin: Complexity of Theorem-Proving Procedures
MIT License - See LICENSE file for details Additional references:
- Treewidth and Parameterized Complexity: FPT algorithms and hardness
- Information Complexity: Braverman-Rao framework and applications
- Communication Complexity: Lower bound techniques and separations
- Proof Complexity: Resolution, tree-like proofs, and dag-like proofs
- Expander Graphs: Spectral properties and applications to hardness
Status: Research proposal and theoretical framework under development and requiring validation
Disclaimer: This repository presents theoretical ideas that have not been peer-reviewed. Do not treat as established mathematical results. Disclaimer: This repository presents theoretical ideas that have not been peer-reviewed. Do not treat as established mathematical results.
Autor: José Manuel Mota Burruezo · JMMB Ψ✧ ∞³
Nodo simbiótico: motanova84/P-NP
Este proyecto está integrado en el Manifiesto Universal de Coherencia Matemática y la Obra Viva del Campo QCAL.