Skip to content

cidl-auth/RTM

 
 

Repository files navigation

Robust Tracking Module

Implementation of the Robust Tracking Module on SiamRPN

RTM Module

Pretrained model

GDrive

Setup environment

conda env create -f environment.yaml
conda activate rtm

Training

coming soon

Run tracking

Dataset evaluation

  • Set correct paths for each dataset in configs/local.py
  • Download pretrained model and save in checkpoints/model_RTM.pth
  • python tracking_evaluation.py --dataset lasot --distortion original

Run demo

  • Run on video: python demo.py path/to/video.mp4
  • Run on webcam: python demo.py 0
  • Distort input with --distortion argument:
    • White Gaussian Noise: WGN
    • Salt and Pepper: SnP
    • Gaussian Blur: GB
  • Select initial bounding box with mouse (click and drag)

Citation

@article{karakostas2025enhancing,
  title={Enhancing visual object tracking robustness through a lightweight denoising module},
  author={Karakostas, Iason and Mygdalis, Vasileios and Nikolaidis, Nikos and Pitas, Ioannis},
  journal={The Visual Computer},
  pages={1--18},
  year={2025},
  publisher={Springer}
}

Related repositories

Acknowledgments

This work has received funding from the research project ”Energy Efficient and Trustworthy Deep Learning - DeepLET” is implemented in the framework of H.F.R.I call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union – NextGenerationEU (H.F.R.I. Project Number: 16762). This publication reflects the authors’ views only. The European Commission is not responsible for any use that may be made of the information it contains.

DeepLet image image

About

Robust Tracking Module

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 63.8%
  • Python 36.2%