Implementation of the Robust Tracking Module on SiamRPN
conda env create -f environment.yaml
conda activate rtm
coming soon
- Set correct paths for each dataset in
configs/local.py - Download pretrained model and save in
checkpoints/model_RTM.pth python tracking_evaluation.py --dataset lasot --distortion original
- Run on video:
python demo.py path/to/video.mp4 - Run on webcam:
python demo.py 0 - Distort input with
--distortionargument:- White Gaussian Noise:
WGN - Salt and Pepper:
SnP - Gaussian Blur:
GB
- White Gaussian Noise:
- Select initial bounding box with mouse (click and drag)
@article{karakostas2025enhancing,
title={Enhancing visual object tracking robustness through a lightweight denoising module},
author={Karakostas, Iason and Mygdalis, Vasileios and Nikolaidis, Nikos and Pitas, Ioannis},
journal={The Visual Computer},
pages={1--18},
year={2025},
publisher={Springer}
}
This work has received funding from European Union’s Horizon 2020 research and innovation programme under grant agreement No 871479 (AERIAL-CORE), and the research project “Energy Efficient and Trustworthy Deep Learning-DeepLET” implemented in the framework of H.F.R.I call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union-NextGenerationEU (Pr. Number: 016762).
