Skip to content

iason1907/RTM

Repository files navigation

Robust Tracking Module

Implementation of the Robust Tracking Module on SiamRPN

RTM Module

Pretrained model

GDrive

Setup environment

conda env create -f environment.yaml
conda activate rtm

Training

coming soon

Run tracking

Dataset evaluation

  • Set correct paths for each dataset in configs/local.py
  • Download pretrained model and save in checkpoints/model_RTM.pth
  • python tracking_evaluation.py --dataset lasot --distortion original

Run demo

  • Run on video: python demo.py path/to/video.mp4
  • Run on webcam: python demo.py 0
  • Distort input with --distortion argument:
    • White Gaussian Noise: WGN
    • Salt and Pepper: SnP
    • Gaussian Blur: GB
  • Select initial bounding box with mouse (click and drag)

Citation

@article{karakostas2025enhancing,
  title={Enhancing visual object tracking robustness through a lightweight denoising module},
  author={Karakostas, Iason and Mygdalis, Vasileios and Nikolaidis, Nikos and Pitas, Ioannis},
  journal={The Visual Computer},
  pages={1--18},
  year={2025},
  publisher={Springer}
}

Related repositories

Acknowledgement

This work has received funding from European Union’s Horizon 2020 research and innovation programme under grant agreement No 871479 (AERIAL-CORE), and the research project “Energy Efficient and Trustworthy Deep Learning-DeepLET” implemented in the framework of H.F.R.I call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union-NextGenerationEU (Pr. Number: 016762).

About

Robust Tracking Module

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published