Skip to content

Suraj1199/DLfromScratch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🧠 Machine Learning Algorithms Implementation Suite

Python License Algorithms Implementation

📋 Project Overview

Developed a comprehensive suite of machine learning algorithms from scratch using fundamental Python libraries, demonstrating deep understanding of mathematical foundations and implementation details of core ML/DL techniques.

🚀 Key Achievements

🏆 Accomplishment 📊 Impact
15+ Algorithms Implemented Built classification, regression, clustering, and dimensionality reduction algorithms entirely from mathematical first principles
Zero Framework Dependency Avoided high-level ML libraries for core implementations, relying only on NumPy for mathematical operations
Educational Excellence Created detailed Jupyter Notebooks with step-by-step explanations, visualizations, and performance evaluations

🔧 Technical Implementation

📊 Algorithms & Techniques

Linear Models
  • Simple Linear Regression
  • Multiple Linear Regression
  • Polynomial Regression
  • Ordinary Least Squares
  • Normal Equation Solutions
Classification
  • Binary Logistic Regression with sigmoid activation
  • Multiclass Logistic Regression with softmax activation
  • K-Nearest Neighbors
Neural Networks
  • Custom neural network with backpropagation implementation
  • Forward and backward propagation from scratch
  • Gradient descent optimization
Unsupervised Learning
  • K-Means Clustering
  • Principal Component Analysis
  • Gaussian-based Anomaly Detection

💡 Core Competencies Demonstrated

┌─────────────────────────┬─────────────────────────────┐
│ Mathematical Programming │ Matrix operations           │
│                         │ Vectorized computations     │
│                         │ Gradient calculations       │
├─────────────────────────┼─────────────────────────────┤
│ Algorithm Design        │ Backpropagation             │
│                         │ Cost functions              │
│                         │ Optimization techniques     │
├─────────────────────────┼─────────────────────────────┤
│ Data Visualization      │ Decision boundaries         │
│                         │ Training curves             │
│                         │ Data distributions          │
├─────────────────────────┼─────────────────────────────┤
│ Performance Evaluation  │ Accuracy, precision, recall │
│                         │ Loss metrics                │
│                         │ Cross-validation concepts   │
└─────────────────────────┴─────────────────────────────┘

🛠️ Technologies Used

  • Languages: Python, NumPy, Pandas
  • Visualization: Matplotlib, Seaborn
  • Tools: Jupyter Notebook, Scikit-learn (data only)
  • ML Concepts: Gradient descent, Feature scaling, Cross-entropy loss, Regularization

🌟 Project Impact

🎓 Educational Resource

  • Created learning materials that explain the mathematical foundations behind ML algorithms
  • Step-by-step implementation guides for complex concepts

⚙️ Technical Depth

  • Demonstrated ability to translate mathematical concepts into efficient code implementations
  • Showcased understanding of optimization and numerical stability

🔬 Research Foundation

  • Built extensible framework for experimenting with ML algorithm variations and improvements
  • Modular design allows for easy extension and modification

📁 Repository Structure

Each notebook follows a consistent pattern for maximum learning value:

📗 Notebook Components

  1. 📘 Mathematical Foundation - Clear explanation of underlying theory
  2. 💻 Custom Implementation - Algorithm built from scratch without ML frameworks
  3. 📈 Training Process - Visualization of convergence and optimization
  4. 📊 Evaluation Metrics - Comprehensive performance analysis
  5. 🧪 Practical Examples - Real-world applications and synthetic data testing

📚 Complete Algorithm Collection

  • Simple_Linear_Regression.ipynb
  • Multiple_Linear_Regression.ipynb
  • Binary_Classification_using_Logistic_Regression.ipynb
  • Multiclass_Classification_using_Logistic_Regression.ipynb
  • Simple_Neural_Network.ipynb
  • K_Means_Clustering.ipynb
  • Principal_Components_Analysis.ipynb
  • Anamoly_Detection_using_Gaussian_Distribution.ipynb
  • K_Nearest_Neighbors.ipynb
  • Simple_Polynomial_Regression.ipynb
  • Ordinary_Least_Squares_Linear_Regression.ipynb
  • Compute_Weights_Analytically_Using_Normal_Equation.ipynb

Demonstrates advanced understanding of machine learning theory and exceptional programming skills in translating mathematical concepts to practical implementations.

Status Complexity Skills

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published