Developed a comprehensive suite of machine learning algorithms from scratch using fundamental Python libraries, demonstrating deep understanding of mathematical foundations and implementation details of core ML/DL techniques.
| 🏆 Accomplishment | 📊 Impact |
|---|---|
| 15+ Algorithms Implemented | Built classification, regression, clustering, and dimensionality reduction algorithms entirely from mathematical first principles |
| Zero Framework Dependency | Avoided high-level ML libraries for core implementations, relying only on NumPy for mathematical operations |
| Educational Excellence | Created detailed Jupyter Notebooks with step-by-step explanations, visualizations, and performance evaluations |
Linear Models
- Simple Linear Regression
- Multiple Linear Regression
- Polynomial Regression
- Ordinary Least Squares
- Normal Equation Solutions
Classification
- Binary Logistic Regression with sigmoid activation
- Multiclass Logistic Regression with softmax activation
- K-Nearest Neighbors
Neural Networks
- Custom neural network with backpropagation implementation
- Forward and backward propagation from scratch
- Gradient descent optimization
Unsupervised Learning
- K-Means Clustering
- Principal Component Analysis
- Gaussian-based Anomaly Detection
┌─────────────────────────┬─────────────────────────────┐
│ Mathematical Programming │ Matrix operations │
│ │ Vectorized computations │
│ │ Gradient calculations │
├─────────────────────────┼─────────────────────────────┤
│ Algorithm Design │ Backpropagation │
│ │ Cost functions │
│ │ Optimization techniques │
├─────────────────────────┼─────────────────────────────┤
│ Data Visualization │ Decision boundaries │
│ │ Training curves │
│ │ Data distributions │
├─────────────────────────┼─────────────────────────────┤
│ Performance Evaluation │ Accuracy, precision, recall │
│ │ Loss metrics │
│ │ Cross-validation concepts │
└─────────────────────────┴─────────────────────────────┘
- Languages:
Python,NumPy,Pandas - Visualization:
Matplotlib,Seaborn - Tools:
Jupyter Notebook,Scikit-learn(data only) - ML Concepts:
Gradient descent,Feature scaling,Cross-entropy loss,Regularization
- Created learning materials that explain the mathematical foundations behind ML algorithms
- Step-by-step implementation guides for complex concepts
- Demonstrated ability to translate mathematical concepts into efficient code implementations
- Showcased understanding of optimization and numerical stability
- Built extensible framework for experimenting with ML algorithm variations and improvements
- Modular design allows for easy extension and modification
Each notebook follows a consistent pattern for maximum learning value:
- 📘 Mathematical Foundation - Clear explanation of underlying theory
- 💻 Custom Implementation - Algorithm built from scratch without ML frameworks
- 📈 Training Process - Visualization of convergence and optimization
- 📊 Evaluation Metrics - Comprehensive performance analysis
- 🧪 Practical Examples - Real-world applications and synthetic data testing
Simple_Linear_Regression.ipynbMultiple_Linear_Regression.ipynbBinary_Classification_using_Logistic_Regression.ipynbMulticlass_Classification_using_Logistic_Regression.ipynbSimple_Neural_Network.ipynbK_Means_Clustering.ipynbPrincipal_Components_Analysis.ipynbAnamoly_Detection_using_Gaussian_Distribution.ipynbK_Nearest_Neighbors.ipynbSimple_Polynomial_Regression.ipynbOrdinary_Least_Squares_Linear_Regression.ipynbCompute_Weights_Analytically_Using_Normal_Equation.ipynb
Demonstrates advanced understanding of machine learning theory and exceptional programming skills in translating mathematical concepts to practical implementations.