-
Notifications
You must be signed in to change notification settings - Fork 5
Added codes for AOA, AROA and MVO #4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
soumitri2001
wants to merge
8
commits into
CMATER-JUCS:main
Choose a base branch
from
soumitri2001:main
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
4d95504
[ADD] AOA code
soumitri2001 7d1d432
[ADD] AROA code
soumitri2001 8bc9c16
[ADD] MVO code
soumitri2001 8ccb3ff
init refactorings
soumitri2001 0839641
refactorings
soumitri2001 2c6b6ff
updated parameter input for AOA, AROA and MVO
soumitri2001 85a69f6
necessary updates
soumitri2001 172c861
code updated
soumitri2001 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,127 @@ | ||
| """ | ||
| Programmer: Soumitri Chattopadhyay | ||
| Date of Development: 11/07/2021 | ||
| This code has been developed according to the procedures mentioned in the following research article: | ||
| "Laith A., Diabat A., Mirjalili S., Elaziz M.A., Gandomi A.H. The Arithmetic Optimization Algorithm. | ||
| Computer Methods in Applied Mechanics and Engineering, 376, 113609 (2021)" | ||
| """ | ||
|
|
||
| import math | ||
|
|
||
| import numpy as np | ||
| from sklearn import datasets | ||
|
|
||
| from Py_FS.wrapper.nature_inspired.algorithm import Algorithm | ||
| from Py_FS.wrapper.nature_inspired._transfer_functions import get_trans_function | ||
|
|
||
|
|
||
| class AOA(Algorithm): | ||
|
|
||
| # Arithmetic Optimization Algorithm | ||
| ############################### Parameters #################################### | ||
| # # | ||
| # num_agents: number of agents # | ||
| # max_iter: maximum number of generations # | ||
| # train_data: training samples of data # | ||
| # train_label: class labels for the training samples # | ||
| # obj_function: the function to maximize while doing feature selection # | ||
| # trans_function_shape: shape of the transfer function used # | ||
| # save_conv_graph: boolean value for saving convergence graph # | ||
| # # | ||
| ############################################################################### | ||
|
|
||
| def __init__(self, | ||
| num_agents, | ||
| max_iter, | ||
| train_data, | ||
| train_label, | ||
| save_conv_graph=False, | ||
| seed=0): | ||
|
|
||
| super().__init__(num_agents=num_agents, | ||
| max_iter=max_iter, | ||
| train_data=train_data, | ||
| train_label=train_label, | ||
| save_conv_graph=save_conv_graph, | ||
| seed=seed) | ||
|
|
||
| self.algo_name = 'AOA' | ||
| self.agent_name = 'Agent' | ||
| self.trans_function = None | ||
| self.algo_params = {} | ||
|
|
||
| def user_input(self): | ||
| # initializing parameters | ||
| self.algo_params['Min'] = float(input('Minimum value of the accelerated function [0-1]: ') or 0.1) | ||
| self.algo_params['Max'] = float(input('Maximum value of the accelerated function [0-1]: ') or 0.9) | ||
| self.algo_params['EPS'] = float(input('Value of epsilon [default: 1e-6]: ') or 1e-6) | ||
| self.algo_params['alpha'] = float(input('Exploitation accuracy parameter [1-10]:' ) or 5) | ||
| self.algo_params['mu'] = float(input('Control parameter to adjust the search process [0-1]:' ) or 0.5) | ||
|
|
||
| # initializing transfer function | ||
| self.algo_params['trans_function'] = input('Shape of Transfer Function [s/v/u] (default=s): ').lower() or 's' | ||
| self.trans_function = get_trans_function(self.algo_params['trans_function']) | ||
|
|
||
| def moa(self, Min, Max): | ||
| return Min + (Max - Min) * self.cur_iter / self.max_iter | ||
|
|
||
| def mop(self, alpha=5): | ||
| return 1 - math.pow((self.cur_iter/self.max_iter), (1 / alpha)) | ||
|
|
||
| def exploration(self, i, j, MoP): | ||
| # Eq. (3) | ||
| r2 = np.random.random() | ||
| if r2 >= 0.5: | ||
| self.population[i][j] = self.Leader_agent[j] * (MoP + self.algo_params['EPS']) * self.algo_params['mu'] | ||
| else: | ||
| self.population[i][j] = self.Leader_agent[j] / (MoP + self.algo_params['EPS']) * self.algo_params['mu'] | ||
|
|
||
| def exploitation(self, i, j, MoP): | ||
| # Eq. (5) | ||
| r3 = np.random.random() | ||
| if r3 >= 0.5: | ||
| self.population[i][j] = self.Leader_agent[j] + MoP * self.algo_params['mu'] | ||
| else: | ||
| self.population[i][j] = self.Leader_agent[j] - MoP * self.algo_params['mu'] | ||
|
|
||
| def transfer_to_binary(self, i, j): | ||
| if np.random.random() < self.trans_function(self.population[i][j]): | ||
| self.population[i][j] = 1 | ||
| else: | ||
| self.population[i][j] = 0 | ||
|
|
||
| def next(self): | ||
| print('\n================================================================================') | ||
| print(' Iteration - {}'.format(self.cur_iter + 1)) | ||
| print('================================================================================\n') | ||
|
|
||
| # Eq. (2) | ||
| MoA = self.moa(self.algo_params['Min'], self.algo_params['Max']) | ||
|
|
||
| # Eq. (4) | ||
| MoP = self.mop(self.algo_params['alpha']) | ||
|
|
||
| for i in range(self.num_agents): | ||
| for j in range(self.num_features): | ||
|
|
||
| r1 = np.random.random() | ||
| if r1 > MoA: | ||
| self.exploration(i, j, MoP) # Exploration phase (M,D) | ||
| else: | ||
| self.exploitation(i, j, MoP) # Exploitation phase (A,S) | ||
|
|
||
| # convert to binary using transfer function | ||
| self.transfer_to_binary(i, j) | ||
|
|
||
| # increment current iteration | ||
| self.cur_iter += 1 | ||
|
|
||
|
|
||
| if __name__ == '__main__': | ||
| data = datasets.load_digits() | ||
| algo = AOA(num_agents=20, | ||
| max_iter=100, | ||
| train_data=data.data, | ||
| train_label=data.target) | ||
|
|
||
| solution = algo.run() | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,191 @@ | ||
| """ | ||
| Programmer: Soumitri Chattopadhyay | ||
| Date of Development: 11/07/2021 | ||
| This code has been developed according to the procedures mentioned in the following research article: | ||
| "Hashim, F.A., Hussain, K., Houssein, E.H. et al. Archimedes Optimization Algorithm. | ||
| Applied Intelligence, 51, 1531–1551 (2021)" | ||
| """ | ||
|
|
||
| import numpy as np | ||
| from sklearn import datasets | ||
|
|
||
| from Py_FS.wrapper.nature_inspired.algorithm import Algorithm | ||
| from Py_FS.wrapper.nature_inspired._transfer_functions import get_trans_function | ||
|
|
||
|
|
||
| class AROA(Algorithm): | ||
|
|
||
| # Archimedes Optimization Algorithm | ||
| ############################### Parameters #################################### | ||
| # # | ||
| # num_agents: number of agents # | ||
| # max_iter: maximum number of generations # | ||
| # train_data: training samples of data # | ||
| # train_label: class labels for the training samples # | ||
| # obj_function: the function to maximize while doing feature selection # | ||
| # trans_function_shape: shape of the transfer function used # | ||
| # save_conv_graph: boolean value for saving convergence graph # | ||
| # # | ||
| ############################################################################### | ||
|
|
||
| def __init__(self, | ||
| num_agents, | ||
| max_iter, | ||
| train_data, | ||
| train_label, | ||
| save_conv_graph=False, | ||
| seed=0): | ||
|
|
||
| super().__init__(num_agents=num_agents, | ||
| max_iter=max_iter, | ||
| train_data=train_data, | ||
| train_label=train_label, | ||
| save_conv_graph=save_conv_graph, | ||
| seed=seed) | ||
|
|
||
| self.algo_name = 'AROA' | ||
| self.agent_name = 'Particle' | ||
| self.trans_function = None | ||
| self.algo_params = {} | ||
|
|
||
| def user_input(self): | ||
| # initializing parameters | ||
| self.algo_params['C1'] = float(input('Control variable C1 [1/2]: ') or 2) | ||
| self.algo_params['C2'] = float(input('Control variable C2 [2/4/6]: ') or 6) | ||
| self.algo_params['C3'] = float(input('Control variable C3 [1/2]: ') or 2) | ||
| self.algo_params['C4'] = float(input('Control variable C4 [0-1]: ') or 0.5) | ||
| self.algo_params['upper'] = float(input('upper limit for normalization [0-1]: ') or 0.9) | ||
| self.algo_params['lower'] = float(input('lower limit for normalization [0-1]: ') or 0.1) | ||
|
|
||
| # initializing transfer function | ||
| self.algo_params['trans_function'] = input('Shape of Transfer Function [s/v/u] (default=s): ').lower() or 's' | ||
| self.trans_function = get_trans_function(self.algo_params['trans_function']) | ||
|
|
||
soumitri2001 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| def initialize(self): | ||
| super(AROA, self).initialize() | ||
| # initializing agent attributes | ||
| self.position = np.random.rand(self.num_agents, self.num_features) # Eq. (4) | ||
| self.volume = np.random.rand(self.num_agents, self.num_features) # Eq. (5) | ||
| self.density = np.random.rand(self.num_agents, self.num_features) # Eq. (5) | ||
| self.acceleration = np.random.rand(self.num_agents, self.num_features) # Eq. (6) | ||
|
|
||
| # initializing leader agent attributes | ||
| self.Leader_position = np.zeros((1, self.num_features)) | ||
| self.Leader_volume = np.zeros((1, self.num_features)) | ||
| self.Leader_density = np.zeros((1, self.num_features)) | ||
| self.Leader_acceleration = np.zeros((1, self.num_features)) | ||
|
|
||
| # rank initial agents | ||
| self.sort_agents_attr() | ||
|
|
||
| def sort_agents_attr(self): | ||
| # sort the agents according to fitness | ||
| if self.num_agents == 1: | ||
| self.fitness = self.obj_function(self.population, self.training_data) | ||
| else: | ||
| fitnesses = self.obj_function(self.population, self.training_data) | ||
| idx = np.argsort(-fitnesses) | ||
| self.population = self.population[idx].copy() | ||
| self.fitness = fitnesses[idx].copy() | ||
| self.position = self.position[idx].copy() | ||
| self.density = self.density[idx].copy() | ||
| self.volume = self.volume[idx].copy() | ||
| self.acceleration = self.acceleration[idx].copy() | ||
|
|
||
| self.Leader_agent = self.population[0].copy() | ||
| self.Leader_fitness = self.fitness[0].copy() | ||
| self.Leader_position = self.position[0].copy() | ||
| self.Leader_volume = self.volume[0].copy() | ||
| self.Leader_density = self.density[0].copy() | ||
| self.Leader_acceleration = self.acceleration[0].copy() | ||
|
|
||
| def exploration(self, i, j, Df): | ||
| # update acceleration | ||
| rand_vol, rand_density, rand_accn = np.random.random(3) | ||
| self.acceleration[i][j] = (rand_density + rand_vol * rand_accn) / (self.density[i][j] * self.volume[i][j]) | ||
| # update position | ||
| r1, rand_pos = np.random.random(2) | ||
| # Eq. (13) | ||
| self.position[i][j] = self.position[i][j] + self.algo_params['C1'] * r1 * Df * (rand_pos - self.position[i][j]) | ||
|
|
||
| def exploitation(self, i, j, Tf, Df): | ||
| # update acceleration | ||
| self.acceleration[i][j] = (self.Leader_density[j] + self.Leader_volume[j] * self.Leader_acceleration[j]) / ( | ||
| self.density[i][j] * self.volume[i][j]) | ||
| # update position | ||
| r2, r3 = np.random.random(2) | ||
| T_ = self.algo_params['C3'] * Tf | ||
| P = 2 * r3 - self.algo_params['C4'] | ||
| # Eq. (15) | ||
| F = 1 if P <= 0.5 else -1 | ||
| # Eq. (14) | ||
| self.position[i][j] = self.position[i][j] + F * self.algo_params['C2'] * r2 * self.acceleration[i][j] * Df * ( | ||
| (T_ * self.Leader_position[j]) - self.position[i][j]) | ||
|
|
||
| def normalize_accn(self, i, j): | ||
| # Normalize accelerations | ||
| max_accn = np.amax(self.acceleration[i]) | ||
| min_accn = np.amin(self.acceleration[i]) | ||
|
|
||
| # Eq. (12) | ||
| self.acceleration[i][j] = self.algo_params['lower'] + (self.acceleration[i][j] - min_accn) / (max_accn - min_accn) * self.algo_params['upper'] | ||
|
|
||
| def transfer_to_binary(self, i, j): | ||
| # lower acceleration => closer to equilibrium | ||
| if self.trans_function(self.acceleration[i][j]) < np.random.random(): | ||
| self.population[i][j] = 1 | ||
| else: | ||
| self.population[i][j] = 0 | ||
|
|
||
| def post_processing(self): | ||
| super(AROA, self).post_processing() | ||
| # update other leader attributes | ||
| if self.fitness[0] > self.Leader_fitness: | ||
| self.Leader_position = self.position[0].copy() | ||
| self.Leader_volume = self.volume[0].copy() | ||
| self.Leader_density = self.density[0].copy() | ||
| self.Leader_acceleration = self.acceleration[0].copy() | ||
|
|
||
| def next(self): | ||
| print('\n================================================================================') | ||
| print(' Iteration - {}'.format(self.cur_iter + 1)) | ||
| print('================================================================================\n') | ||
|
|
||
| # weight factors | ||
| Tf = np.exp((self.cur_iter - self.max_iter) / self.max_iter) # Eq. (8) | ||
| Df = np.exp((self.max_iter - self.cur_iter) / self.max_iter) - (self.cur_iter / self.max_iter) # Eq. (9) | ||
|
|
||
| for i in range(self.num_agents): | ||
| for j in range(self.num_features): | ||
| # Eq. (7) | ||
| r1, r2 = np.random.random(2) | ||
| # update density | ||
| self.density[i][j] = self.density[i][j] + r1 * (self.Leader_density[j] - self.density[i][j]) | ||
| # update volume | ||
| self.volume[i][j] = self.volume[i][j] + r2 * (self.Leader_volume[j] - self.volume[i][j]) | ||
|
|
||
| if Tf <= 0.5: | ||
| # Exploration phase | ||
| self.exploration(i, j, Df) | ||
| else: | ||
| # Exploitation phase | ||
| self.exploitation(i, j, Tf, Df) | ||
|
|
||
| # normalize accelerations | ||
| self.normalize_accn(i, j) | ||
|
|
||
| # convert to binary using transfer function | ||
| self.transfer_to_binary(i, j) | ||
|
|
||
| # increment current iteration | ||
| self.cur_iter += 1 | ||
|
|
||
|
|
||
| if __name__ == '__main__': | ||
| data = datasets.load_digits() | ||
| algo = AROA(num_agents=20, | ||
| max_iter=100, | ||
| train_data=data.data, | ||
| train_label=data.target) | ||
|
|
||
| solution = algo.run() | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.