The Zeabur AI SDK is a TypeScript toolkit designed to help you build AI-powered deployment agents and automation tools using popular frameworks like Next.js, React, and Node.js.
You will need Node.js 18+ and npm (or another package manager) installed on your local development machine.
npm install @zeabur/ai-sdkimport { zeaburTools, createZeaburContext } from '@zeabur/ai-sdk';
const context = createZeaburContext('your-api-token');
const result = await zeaburTools.executeCommand({
serviceId: 'service-123',
environmentId: 'env-456',
command: ['ls', '-la']
}, context);import { zeaburTools, createZeaburContext } from '@zeabur/ai-sdk';
const context = createZeaburContext('your-api-token');
const result = await zeaburTools.deployFromSpecification({
projectID: 'project-123',
specification: {
services: [
{
name: 'web',
template: 'NODEJS',
// ... service configuration
}
]
}
}, context);import { zeaburTools } from '@zeabur/ai-sdk';
// Get build logs
const buildLogs = await zeaburTools.getBuildLogs({
projectID: 'project-123',
deploymentID: 'deploy-456'
}, context);
// Get runtime logs
const runtimeLogs = await zeaburTools.getRuntimeLogs({
serviceID: 'service-123',
environmentID: 'env-456',
type: 'BUILD'
}, context);
// Get deployment history
const deployments = await zeaburTools.getDeployments({
serviceId: 'service-123'
}, context);import { zeaburTools } from '@zeabur/ai-sdk';
const templates = await zeaburTools.searchTemplate({
query: 'nextjs'
}, context);The Zeabur AI SDK works seamlessly with the Vercel AI SDK to build intelligent deployment agents.
import { ToolLoopAgent } from 'ai';
import { zeaburTools, createZeaburContext } from '@zeabur/ai-sdk';
import { openai } from '@ai-sdk/openai';
const zeaburContext = createZeaburContext(process.env.ZEABUR_API_TOKEN);
const deploymentAgent = new ToolLoopAgent({
model: openai('gpt-4o'),
system: 'You are a Zeabur deployment assistant.',
tools: {
execute_command: {
description: 'Execute commands on Zeabur services',
inputSchema: zeaburSchemas.executeCommandSchema,
execute: async (input) => {
return await zeaburTools.executeCommand(input, zeaburContext);
}
},
deploy_service: {
description: 'Deploy services on Zeabur',
inputSchema: zeaburSchemas.deployFromSpecificationSchema,
execute: async (input) => {
return await zeaburTools.deployFromSpecification(input, zeaburContext);
}
}
}
});// app/api/chat/route.ts
import { createZeaburContext, zeaburTools } from '@zeabur/ai-sdk';
import { streamText } from 'ai';
import { openai } from '@ai-sdk/openai';
export async function POST(req: Request) {
const { messages } = await req.json();
const zeaburContext = createZeaburContext(
process.env.ZEABUR_API_TOKEN
);
const result = streamText({
model: openai('gpt-4o'),
messages,
tools: {
execute_command: {
description: 'Execute commands on services',
parameters: zeaburSchemas.executeCommandSchema,
execute: async (args) => {
return await zeaburTools.executeCommand(args, zeaburContext);
}
}
}
});
return result.toDataStreamResponse();
}Try the SDK without authentication - perfect for testing and learning:
import { zeaburTools, createZeaburDemoContext } from '@zeabur/ai-sdk';
// No API token required - returns mock data
const demoContext = createZeaburDemoContext();
const result = await zeaburTools.executeCommand({
serviceId: 'demo-service',
environmentId: 'demo-env',
command: ['ls', '-la']
}, demoContext);
console.log(result); // Returns: "Mock command output: Hello from demo mode!"- executeCommand - Execute shell commands on services
- deployFromSpecification - Deploy services from YAML/JSON specifications
- executeGraphQL - Run custom GraphQL queries
- decideFilesystem - Determine GitHub or Upload ID
- listFiles - List directory contents
- readFile - Read file with pagination support
- fileDirRead - Execute safe read-only commands
- getBuildLogs - Fetch build logs for deployments
- getRuntimeLogs - Get service runtime logs
- getDeployments - List deployment history
- searchTemplate - Search deployment templates
- renderRegionSelector - Region selection interface
- renderProjectSelector - Project selection interface
- renderServiceCard - Service status cards
- renderDockerfile - Syntax-highlighted Dockerfile viewer
- renderRecommendation - Smart recommendation buttons
- renderFloatingButton - Floating action buttons
The SDK requires a Zeabur API token to be explicitly passed by your application:
// ✅ Correct - Your application manages the token
const token = process.env.ZEABUR_API_TOKEN;
const context = createZeaburContext(token);
// Or from cookies, headers, database, etc.
const token = cookies().get('token')?.value;
const context = createZeaburContext(token);Note: This SDK is a library and does NOT read environment variables directly. The consuming application is responsible for managing authentication.
npm install # Install dependencies
npm run build # Build TypeScript
npm run demo # Run demo mode
npm run type-check # Type checking
npm run lint # LintingJoin the Zeabur community to ask questions, share ideas, and get help:
Contributions to the Zeabur AI SDK are welcome and highly appreciated. Please check out our contributing guidelines before getting started.
This library is created by the Zeabur team, with contributions from the Open Source Community.
MIT