A sophisticated multi-agent AI system with persistent memory, adaptive learning, and intelligent context management. Features 197 specialized agents across 24 categories with ReasoningBank integration, neural pattern recognition, and unbounded context memory (UCM).
Version: 2.0.0 | Status: Production-Ready | Last Updated: December 2024
- Features
- 🚀 Web UI Quick Start
- Quick Setup (Automated)
- Prerequisites (Manual Install)
- Installation
- Configuration
- Daemon Services
- PhD Research Pipeline (45 Agents)
- Observability Dashboard
- Learning System
- Quick Start
- Available Commands
- Architecture
- Testing
- Troubleshooting
The fastest way to get started is with the polished Web UI:
# 1. Clone the repository
git clone https://github.com/txc0ld/godagent.git
cd godagent
# 2. Install dependencies
npm install
# 3. Start the Web UI
npm run start:uiOpen http://localhost:5173 in your browser. The setup wizard will guide you through:
- Welcome - Overview of God Agent capabilities
- API Keys - Enter your Anthropic API key (get one at console.anthropic.com)
- Validation - Verify your configuration works
- Ready! - Start using the intelligent AI orchestration system
| Requirement | Purpose | Where to Get |
|---|---|---|
| Anthropic API Key | Powers Claude AI | console.anthropic.com/settings/keys |
| Node.js 22+ | JavaScript runtime | nodejs.org or nvm install 22 |
- 🧠 Intelligent Routing - Automatically detects task type and routes to optimal agent
- 🏗️ Project Scaffolding - Type "Build an API with auth" and it auto-generates PRD, specs, and task plans
- 📊 Orchestration Visualization - See real-time routing decisions and confidence scores
- 💬 Chat Interface - Natural conversation with multi-agent coordination
- 🔧 One-Click Setup - Wizard handles API key configuration
# Check status
npx tsx src/god-agent/universal/cli.ts status
# Ask a question
npx tsx src/god-agent/universal/cli.ts ask "How do I implement authentication?"
# Generate code
npx tsx src/god-agent/universal/cli.ts code "Create a REST API for user management"- 197 Specialized Agents across 24 categories (research, coding, analysis, etc.)
- 5-Layer Architecture: Native Core, Reasoning, Memory, Learning, Orchestration
- Unbounded Context Memory (UCM): Intelligent episode storage and retrieval
- IDESC v2: Intelligent Dual Embedding Symmetric Chunking with outcome tracking
- ReasoningBank Integration: Trajectory linking for reasoning trace injection
- SoNA Engine: Self-organizing Neural Architecture for adaptive learning
- Style Profiles: Learn and apply writing styles from documents
- Claude Flow Integration: Multi-agent swarm coordination
- GNN Training: Graph Neural Network training with EWC regularization
- 40+ Attention Mechanisms: Flash, Sparse, Linear, Performer, Longformer, and more
- SQLite Persistence: All learning data persisted (no more memory loss on restart)
The learning system has been completely overhauled to fix critical issues where learning data was lost on restart and components were disconnected:
| Issue | Before | After |
|---|---|---|
| Episode Storage | In-memory Map (lost on restart) | SQLite persistence |
| Trajectory Capture | Not connected to Task() | Full output capture |
| Quality Assessment | Evaluated prompts, not results | Evaluates actual output |
| Feedback Loop | Disconnected | End-to-end connected |
| GNN Training | Incomplete implementation | Full EWC regularization |
- GNN Trainer (
src/god-agent/core/reasoning/gnn-trainer.ts): Contrastive learning with Elastic Weight Consolidation (EWC) to prevent catastrophic forgetting - Vector Validation (
src/god-agent/core/validation/vector-validation.ts): Validates embedding dimensions, normalization, and similarity thresholds - 40+ Attention Mechanisms (
src/god-agent/core/attention/mechanisms/): Including Flash Attention, Sparse Transformer, Linformer, Performer, Longformer, Hyena, and more - UCM Daemon Services: Context, Health, Recovery, and DESC services with JSON-RPC 2.0 interface
- Hooks System (
src/god-agent/core/hooks/): Extensible hooks framework with handlers:- Quality Assessment Trigger: Automatic quality evaluation after task completion
- Auto-Injection: Automatic DESC context injection into prompts
- Task Result Capture: Captures task outputs for learning pipeline
- Hook Runner (
src/god-agent/core/executor/hook-runner.ts): Safe hook execution with timeout and sandboxing - Agent Execution System (
src/god-agent/core/agents/):- Agent Selector: Intelligent agent selection based on task requirements
- Task Executor: Executes tasks with proper agent coordination
- Capability Index Caching: 76x faster CLI startup with hash-based agent definition caching
- Two-Phase Execution Model (
/god-code,/god-write):- Phase 1: CLI prepares task, creates trajectory, stores in SQLite
- Phase 2: Task subagent executes with full context
- Enables feedback collection across process boundaries
- Cross-Session Trajectory Feedback (TASK-TRAJ-001, TASK-TRAJ-002):
- SQLite fallback for trajectory lookup (no more "Trajectory not found" errors)
- Null-safe response access for SQLite-loaded trajectories
- Graceful degradation when trajectory has minimal data
- Core Daemon JSON-RPC 2.0 (TASK-DAEMON-002):
- Newline-delimited message parsing with
handleData() - JSON parsing/validation with
processMessage() - Service routing (health.status, health.ping) with
routeRequest() - Proper JSON serialization with
sendResponse()
- Newline-delimited message parsing with
- MBTI-Based Writing Agent Routing (TASK-WRITING-001):
creative-writer(ENFP + Type 7) - poems, stories, humorprofessional-writer(ESTJ + Type 3) - formal, businessacademic-writer(INTJ + Type 1) - scholarly, researchcasual-writer(ESFP + Type 7) - social, conversationaltechnical-writer(ISTJ + Type 5) - documentation
- Unified Quality Estimator (TASK-QUAL-001):
- Hook delegates to universal
assessQuality()(no duplicate logic) - Mode-aware scoring: prose (ask/research) vs structured (code/write)
- RULE-035 compliant threshold: 0.5 for positive (was 0.7)
- IT Governance prose responses now score 0.5+ (was 0.2)
- 42 new tests with regression coverage
- Hook delegates to universal
┌─────────────────────────────────────────────────────────────┐
│ USER INTERACTION │
│ CLI / Slash Commands / Claude Code │
├─────────────────────────────────────────────────────────────┤
│ TASK EXECUTION │
│ god-agent ask/code/research → Task() → Output │
│ ↓ (NEW: captures output) │
├─────────────────────────────────────────────────────────────┤
│ QUALITY ASSESSMENT │
│ QualityEstimator evaluates ACTUAL OUTPUT (not prompt) │
│ ↓ │
├─────────────────────────────────────────────────────────────┤
│ LEARNING PIPELINE │
│ TrajectoryTracker → ReasoningBank → SoNA → GNN │
│ ↓ │
├─────────────────────────────────────────────────────────────┤
│ PERSISTENT STORAGE │
│ SQLite: episodes, trajectories, patterns, outcomes │
│ File: .agentdb/sona/, .god-agent/weights/ │
└─────────────────────────────────────────────────────────────┘
##Learning Flow
┌─────────────────────────────────────────────────────────────────────┐
│ KNOWLEDGE STORAGE │
│ /god-learn "Factory pattern enables flexible object creation" │
│ ↓ │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ storeKnowledge() │ │
│ │ 1. Generate embedding vector (OpenAI text-embedding-3-small) │ │
│ │ 2. Chunk if >2000 chars (Sprint 13) │ │
│ │ 3. Store in AgentDB with metadata (domain, tags, quality) │ │
│ │ 4. Track domain expertise counter │ │
│ └──────────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────────────────┐
│ SEMANTIC RETRIEVAL │
│ /god-ask "How do I create objects flexibly?" │
│ ↓ │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ retrieveRelevant() │ │
│ │ 1. Embed the query │ │
│ │ 2. Vector similarity search (minSimilarity: 0.3) │ │
│ │ 3. Return top-k matches with provenance │ │
│ │ 4. Increment usageCount for retrieved patterns │ │
│ └──────────────────────────────────────────────────────────────┘ │
│ ↓ │
│ Context injected into LLM prompt → Better response │
└─────────────────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────────────────┐
│ FEEDBACK LOOP │
│ /god-feedback <trajectory-id> --rating 0.9 --useful │
│ ↓ │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ feedback() │ │
│ │ rating > 0.7: reinforcePattern() → verdict: 'positive' │ │
│ │ rating < 0.3: weakenPattern() → verdict: 'negative' │ │
│ │ │ │
│ │ SonaEngine (SONA-weighted update): │ │
│ │ - Adjusts pattern weights based on feedback │ │
│ │ - Higher weights = retrieved more often │ │
│ │ - Creates new patterns from successful interactions │ │
│ └──────────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
| Method | Line | Purpose |
|---|---|---|
| storeKnowledge() | 2278 | Store + chunk + embed knowledge |
| retrieveRelevant() | 2357 | Vector search for relevant knowledge |
| feedback() | 2146 | User feedback triggers learning |
| reinforcePattern() | 2233 | Boost patterns with positive feedback |
| weakenPattern() | 2256 | Demote patterns with negative feedback |
Learning Signals
- Usage tracking - Retrieved patterns get usageCount++
- Quality scoring - Auto-assessed (0.0-1.0) based on response characteristics
- Explicit feedback - /god-feedback manually adjusts weights
- Domain expertise - Tracks knowledge density per domain
The more you use and rate knowledge, the better it surfaces relevant context in future queries.
For a fresh machine, the setup script handles everything automatically:
# Clone or download the repository first, then:
cd god-agent-package
# Run the complete setup
chmod +x scripts/packaging/setup-god-agent.sh
./scripts/packaging/setup-god-agent.sh| Component | Purpose |
|---|---|
| NVM + Node.js 22 | JavaScript runtime (required) |
| Claude Code CLI | Anthropic's official CLI tool |
| claude-flow@alpha | Multi-agent swarm coordination |
| ruv-swarm | Enhanced swarm capabilities |
| Python 3.11+ venv | For Serena and embedding server |
| Serena MCP | Language server protocol integration |
| Embedding API | Vector similarity search (1536D) |
| .mcp.json | MCP server configuration |
# Full installation (recommended)
./scripts/packaging/setup-god-agent.sh
# Skip specific components
./scripts/packaging/setup-god-agent.sh --skip-nvm # Already have Node.js 22
./scripts/packaging/setup-god-agent.sh --skip-python # Already have Python 3.11+
./scripts/packaging/setup-god-agent.sh --skip-serena # Don't need Serena MCP
./scripts/packaging/setup-god-agent.sh --skip-embedding # Don't need embedding server
# Minimal install (core only)
./scripts/packaging/setup-god-agent.sh --minimal
# Show all options
./scripts/packaging/setup-god-agent.sh --helpAfter the script completes, add to your ~/.bashrc or ~/.profile:
export NVM_DIR="$HOME/.nvm"
[ -s "$NVM_DIR/nvm.sh" ] && \. "$NVM_DIR/nvm.sh"
nvm alias default 22Then reload and start:
source ~/.bashrc
claude # Start Claude Code CLI# Check all components
node --version # Should be v22.x.x
claude --version # Claude Code CLI version
npx claude-flow@alpha --version
python3 --version # Should be 3.11+
# Test God Agent
npx tsx src/god-agent/universal/cli.ts status- Node.js: v22.0.0 or higher (via NVM recommended)
- npm: v10.0.0 or higher
- Python: 3.11+ (for Serena and embedding server)
- TypeScript: v5.0.0 or higher (installed as dev dependency)
- Git, curl or wget
- Embedding Server: For vector similarity search (gte-Qwen2-1.5B-instruct, 1536D)
- Claude Flow MCP: For swarm coordination (
npx claude-flow@alpha)
cd god-agent-package # or your installation directorynpm installnpm run buildnpx tsx src/god-agent/universal/cli.ts statusExpected output:
[GodAgent] God Agent initialized in ~70ms
[AgentRegistry] Initialized with 197 agents from 24 categories
[Memory] Connected to memory server
[SoNA] Weights loaded successfully
Create a .env file in the project root:
# Memory Configuration
GOD_AGENT_MEMORY_PATH=/tmp/god-agent-memory.sock
GOD_AGENT_DB_PATH=.god-agent/events.db
# Embedding Server (if using external)
EMBEDDING_SERVER_URL=http://localhost:8080/embed
# Debug Mode
GOD_AGENT_DEBUG=falseAdd to your Claude Code settings (.claude/settings.local.json):
{
"permissions": {
"allow": [
"Bash(npx tsx src/god-agent/universal/cli.ts status)",
"Bash(npx tsx src/god-agent/universal/cli.ts ask:*)",
"Bash(npx tsx src/god-agent/universal/cli.ts code:*)",
"Bash(npx tsx src/god-agent/universal/cli.ts research:*)",
"Bash(npx tsx src/god-agent/universal/cli.ts write:*)",
"Bash(npx tsx src/god-agent/universal/cli.ts learn:*)"
]
}
}The God Agent system uses multiple background daemons for memory, context management, and observability. Use these commands to manage all services:
npm run god-agent:startThis starts all four daemons in order:
- Memory Daemon - Persistent memory and vector storage
- Core Daemon - Main event processing and IPC
- UCM Daemon - Unbounded Context Memory management
- Observability Daemon - Dashboard and metrics (http://localhost:3847)
npm run god-agent:stopnpm run god-agent:status| Service | Start | Stop | Status |
|---|---|---|---|
| Memory | npm run memory:start |
npm run memory:stop |
npm run memory:status |
| Core Daemon | npm run daemon:start |
npm run daemon:stop |
npm run daemon:status |
| UCM | npm run ucm:start |
npm run ucm:stop |
npm run ucm:status |
| Observability | npm run observe:start |
npm run observe:stop |
npm run observe:status |
npm run observe:openOpens the observability dashboard at http://localhost:3847 showing active agents, pipelines, and activity stream.
The God Agent includes a comprehensive 45-agent pipeline for academic research, dissertation writing, and systematic literature reviews. Each agent specializes in a specific phase of the research process.
# Via slash command in Claude Code
/god-research "Your research topic here"
# Via CLI
npx tsx src/god-agent/cli/phd-cli.ts start "Your research topic"
npx tsx src/god-agent/cli/phd-cli.ts next <session-id> # Advance to next agent
npx tsx src/god-agent/cli/phd-cli.ts complete <session-id> <agent-name> # Mark agent complete
npx tsx src/god-agent/cli/phd-cli.ts status <session-id> # Check progress| Phase | Agents | Description |
|---|---|---|
| Foundation (1-5) | ambiguity-clarifier, step-back-analyzer, self-ask-decomposer, research-planner, construct-definer | Problem framing, question decomposition, planning |
| Literature (6-12) | literature-mapper, source-tier-classifier, systematic-reviewer, quality-assessor, bias-detector, evidence-synthesizer, pattern-analyst | Systematic review, quality assessment, evidence synthesis |
| Theory (13-17) | thematic-synthesizer, theory-builder, theoretical-framework-analyst, contradiction-analyzer, gap-hunter | Theme synthesis, theory building, gap analysis |
| Design (18-25) | hypothesis-generator, model-architect, method-designer, sampling-strategist, instrument-developer, validity-guardian, ethics-reviewer, analysis-planner | Research design, methodology, ethics |
| Writing (26-35) | dissertation-architect, abstract-writer, introduction-writer, literature-review-writer, methodology-writer, results-writer, discussion-writer, conclusion-writer, apa-citation-specialist, citation-extractor | Document structure, section writing, citations |
| QA (36-45) | adversarial-reviewer, confidence-quantifier, citation-validator, reproducibility-checker, risk-analyst, opportunity-identifier, context-tier-manager, file-length-manager, consistency-validator | Quality assurance, validation, final checks |
The pipeline uses Unbounded Context Memory (UCM) with DESC (Dual Embedding Symmetric Chunking) to manage context across the 45 agents:
-
Episode Storage: Each agent's work is stored as an "episode" with:
- Input context and task description
- Agent outputs and decisions
- Outcome tracking (success/failure)
- Vector embeddings for semantic search
-
Rolling Context Window: As agents complete:
- Recent episodes are kept in "hot" tier (immediate access)
- Older episodes move to "warm" tier (vector-searchable)
- Archived episodes go to "cold" tier (on-demand retrieval)
-
DESC Injection: Before each agent runs:
- System queries UCM for relevant prior episodes
- Injects summarized context from previous agents
- Provides confidence scores based on past outcomes
- Warns about negative examples (past failures)
-
Context Flow:
Agent 1 → Episode 1 → UCM Store
↓
Agent 2 ← DESC Inject (Episode 1 summary) → Episode 2 → UCM Store
↓
Agent 3 ← DESC Inject (Episodes 1-2 summaries) → Episode 3 → UCM Store
↓
... continues through 45 agents ...
- No Context Loss: Work from early agents preserved and accessible
- Semantic Retrieval: Later agents can query for specific information
- Outcome Learning: System learns from successes and failures
- Automatic Summarization: Long outputs compressed intelligently
After all agents complete, the pipeline combines individual chapter outputs into a final paper:
# Automatic: Phase 8 triggers when all agents complete
npx tsx src/god-agent/cli/phd-cli.ts complete <session-id> <final-agent>
# Manual: Use the chapter combiner script
npx tsx scripts/combine-chapters.ts docs/research/<your-topic>The PaperCombiner component:
- Generates title page with metadata (word count, date, citations)
- Creates table of contents with anchor links
- Combines all chapters with proper separators
- Validates cross-references between chapters
- Outputs
final-paper.mdandmetadata.json
Convert the final markdown to PDF:
# Install md-to-pdf (one time)
npm install -g md-to-pdf
# Generate PDF
cd docs/research/<your-topic>/final
md-to-pdf final-paper.md --pdf-options '{"format": "A4", "margin": {"top": "20mm", "bottom": "20mm", "left": "25mm", "right": "25mm"}}'The dashboard at http://localhost:3847 provides real-time monitoring of the God Agent system.
| Panel | Description |
|---|---|
| Active Agents | Currently running agents with status (idle/busy/error) |
| Pipelines | Active PhD pipelines showing progress (X/45 steps completed) |
| Activity Stream | Real-time event log of agent operations |
| UCM & IDESC | Episodes stored, context size, injection rates |
| Token Budget | Context usage percentage, warnings, summarization count |
| Daemon Health | Service uptime, events processed, memory usage |
| Agent Registry | Total agents available, categories, selection stats |
| Memory Panels | Reasoning traces, episodes, hyperedges, interactions |
The dashboard uses:
- Server-Sent Events (SSE) for live activity streaming
- 5-second polling for agents, pipelines, and metrics
- WebSocket IPC for daemon communication
┌─────────────────────────────────────────────────────────────┐
│ GOD AGENT OBSERVABILITY DASHBOARD │
├─────────────────┬─────────────────┬─────────────────────────┤
│ Active Agents │ Pipelines │ Activity Stream │
│ ┌───────────┐ │ ┌───────────┐ │ • Agent started: X │
│ │ agent-1 ◉ │ │ │ PhD-001 │ │ • Step completed: Y │
│ │ agent-2 ◎ │ │ │ 18/45 ███ │ │ • Episode stored │
│ └───────────┘ │ └───────────┘ │ • Context injected │
├─────────────────┴─────────────────┴─────────────────────────┤
│ UCM & IDESC │ Token Budget │ Daemon Health │
│ Episodes: 142 │ Usage: 14.2% │ Status: Healthy │
│ Injections: 89 │ Warnings: 0 │ Uptime: 2h 15m │
└─────────────────┴─────────────────┴─────────────────────────┘
The God Agent continuously learns and improves through multiple mechanisms: explicit knowledge storage, style learning, outcome tracking, and neural pattern recognition.
# Via CLI
npx tsx src/god-agent/universal/cli.ts learn "TypeScript best practice: Always use strict mode and explicit return types for better type safety"
# Via slash command
/god-learn "Your knowledge here"
# Store with metadata
npx tsx src/god-agent/universal/cli.ts learn "Factory pattern enables flexible object creation" \
--domain patterns --category pattern --tags "design,factory,creational"
# Store from file (large documents)
npx tsx src/god-agent/universal/cli.ts learn --file ./docs/learnings.md --domain "project/docs"Knowledge is stored with:
- Vector embeddings for semantic retrieval
- Metadata (timestamp, source, category)
- Confidence scoring based on usage patterns
- Automatic chunking for content >2000 characters (OpenAI 8191 token limit compliance)
Content exceeding 2000 characters is automatically chunked using SymmetricChunker:
| Feature | Description |
|---|---|
| Symmetric Chunking | Same algorithm for storage AND retrieval (RULE-064) |
| Semantic Boundaries | Preserves code blocks, tables, Task() calls |
| Parent Tracking | Each chunk references parent for reconstruction |
| Content-Aware Tokens | PROSE=1.3x, CODE=1.5x, TABLE=2.0x, CITATION=1.4x |
| Minimum Merge | Chunks <200 chars merged with adjacent chunks |
| Backward Compatible | Legacy entries work seamlessly with new chunked entries |
# Query stored knowledge (chunks auto-reconstructed)
npx tsx src/god-agent/universal/cli.ts query --domain "patterns" --tags "factory" --limit 5# Learn style from a PDF
npx tsx src/god-agent/universal/cli.ts learn-style /path/to/document.pdf --profile "academic-formal"
# Check available style profiles
npx tsx src/god-agent/universal/cli.ts style-status
# Via slash commands
/god-learn-style /path/to/document.pdf
/god-style-statusStyle profiles capture:
- Vocabulary patterns and word frequency
- Sentence structure preferences
- Tone and formality level
- Domain-specific terminology
# After receiving an output, provide feedback
npx tsx src/god-agent/universal/cli.ts feedback <trajectory-id> --rating good --comment "Excellent analysis"
# Via slash command
/god-feedback <trajectory-id>Feedback ratings: excellent, good, acceptable, poor, failure
Every interaction is recorded as a "trajectory":
┌─────────────────────────────────────────────────────────────┐
│ TRAJECTORY RECORD │
├─────────────────────────────────────────────────────────────┤
│ Input: "How do I implement authentication?" │
│ Agent Selected: security-architect │
│ Reasoning Mode: systematic │
│ Output: [detailed response] │
│ Outcome: success (user feedback: good) │
│ Duration: 4.2s │
│ Tokens Used: 2,847 │
└─────────────────────────────────────────────────────────────┘
These trajectories enable:
- Reasoning Trace Injection: Similar past successes inform new responses
- Agent Selection Learning: System learns which agents perform best for query types
- Failure Avoidance: Past failures are flagged to prevent repetition
The SoNA engine maintains adaptive weights that evolve based on outcomes:
┌─────────────────────────────────────────────────────────────┐
│ SONA WEIGHT ADJUSTMENT │
├─────────────────────────────────────────────────────────────┤
│ Agent: code-analyzer │
│ Query Type: "code review" │
│ │
│ Before: weight = 0.72 │
│ Outcome: success (excellent rating) │
│ After: weight = 0.76 (+0.04) │
│ │
│ Next similar query → code-analyzer more likely selected │
└─────────────────────────────────────────────────────────────┘
Weight updates follow:
- Positive outcomes: Increase agent weight for similar queries
- Negative outcomes: Decrease weight, boost alternatives
- Decay factor: Old weights gradually normalize (prevents over-fitting)
Every episode records success/failure for future injection decisions:
| Metric | Purpose |
|---|---|
| Success Rate | Episodes with >70% success rate get priority injection |
| Confidence Score | HIGH/MEDIUM/LOW based on similarity + success + recency |
| Negative Warnings | Episodes with <50% success flagged as "avoid this approach" |
| Threshold Adjustment | Injection thresholds auto-adjust ±5% based on FPR/accuracy |
The system identifies recurring patterns across interactions:
# Query learned patterns
npx tsx src/god-agent/universal/cli.ts query "authentication patterns"Patterns include:
- Solution Templates: Common problem-solution pairs
- Error Patterns: Frequently failing approaches
- Domain Clusters: Related concepts grouped together
- Causal Chains: "If X then Y" relationships from hyperedge analysis
User Query → Agent Selection (SoNA weights) → Response Generation
│
▼
Trajectory Stored
│
┌─────────────────────────────────┴───────────────────────────────┐
│ │
▼ ▼
User Feedback Implicit Signal
(explicit rating) (task completion,
│ follow-up queries)
│ │
└─────────────────────────────────┬───────────────────────────────┘
│
▼
Outcome Recorded
│
┌─────────────────────────────────┼───────────────────────────────┐
│ │ │
▼ ▼ ▼
SoNA Weights ReasoningBank IDESC Thresholds
Updated Updated Adjusted
│ │ │
└─────────────────────────────────┴───────────────────────────────┘
│
▼
Future Queries Improved
# Full system status including learning stats
npx tsx src/god-agent/universal/cli.ts status
# Output includes:
# - Total trajectories recorded
# - Success rate trends
# - Top-performing agents
# - Pattern clusters identified
# - Style profiles available| Component | Location | Contents |
|---|---|---|
| Events DB | .god-agent/events.db |
Trajectories, outcomes, interactions |
| SoNA Weights | .god-agent/weights/ |
Learned agent selection weights |
| Vector Store | .agentdb/ |
Knowledge embeddings, patterns |
| Style Profiles | .god-agent/styles/ |
Learned writing styles |
| UCM Episodes | .ucm/ |
Context episodes, tier metadata |
npx tsx src/god-agent/universal/cli.ts statusnpx tsx src/god-agent/universal/cli.ts ask "What is the best approach for implementing a REST API?"npx tsx src/god-agent/universal/cli.ts code "Create a TypeScript function to validate email addresses"npx tsx src/god-agent/universal/cli.ts research "Compare React vs Vue for enterprise applications"| Command | Description |
|---|---|
status |
Show God Agent status and learning statistics |
ask <query> |
Ask questions with DAI-001 agent selection |
code <task> |
Generate code with intelligent agent routing |
research <topic> |
Deep research with DAI-002 pipeline orchestration |
write <task> |
Generate documents/papers |
learn <knowledge> |
Store knowledge in the God Agent |
learn-style <pdf> |
Learn writing style from PDF documents |
style-status |
Show available style profiles |
feedback <id> |
Provide feedback for trajectory improvement |
query <search> |
Query stored knowledge and patterns |
help |
Show all available commands |
When using with Claude Code, these slash commands are available:
/god-status- Show system status/god-ask- Ask questions/god-code- Generate code/god-research- Deep research/god-write- Generate documents/god-learn- Store knowledge/god-learn-style- Learn writing styles/god-style-status- Show style profiles/god-feedback- Provide trajectory feedback
┌─────────────────────────────────────────────────────┐
│ ORCHESTRATION LAYER │
│ Claude Flow · Swarm Coordination · Routing │
├─────────────────────────────────────────────────────┤
│ LEARNING LAYER │
│ SoNA Engine · Pattern Recognition · Styles │
├─────────────────────────────────────────────────────┤
│ MEMORY LAYER │
│ UCM · Episode Storage · Vector Search · IDESC │
├─────────────────────────────────────────────────────┤
│ REASONING LAYER │
│ ReasoningBank · Trajectory · Mode Selection │
├─────────────────────────────────────────────────────┤
│ NATIVE CORE LAYER │
│ Agent Registry · Validation · Event System │
└─────────────────────────────────────────────────────┘
| Component | Path | Description |
|---|---|---|
| God Agent Core | src/god-agent/core/god-agent.ts |
Main orchestrator |
| Agent Registry | src/god-agent/core/routing/ |
197 agent definitions |
| UCM System | src/god-agent/core/ucm/ |
Unbounded Context Memory |
| IDESC v2 | src/god-agent/core/ucm/desc/ |
Intelligent DESC |
| ReasoningBank | src/god-agent/core/reasoning/ |
Reasoning traces |
| SoNA Engine | src/god-agent/core/learning/ |
Self-organizing learning |
| Observability | src/god-agent/observability/ |
Metrics and monitoring |
- Outcome Tracking: Success/failure recording with <10ms p95 latency
- Confidence Levels: HIGH/MEDIUM/LOW based on similarity, success rate, age
- Negative Example Warnings: Alerts for episodes with <50% success rate
- Threshold Adjustment: Automatic bounded adjustment (±5% per 30 days)
- Quality Monitoring: Continuous FPR/accuracy alerts
npm test# Core tests
npm test -- --grep "god-agent"
# UCM tests
npm test -- --grep "ucm"
# IDESC tests
npm test -- --grep "idesc"
# Reasoning tests
npm test -- --grep "reasoning"npm run test:coveragenpm run typechecknpm run lintgod-agent-package/
├── src/
│ └── god-agent/
│ ├── core/ # Core system
│ │ ├── god-agent.ts # Main orchestrator
│ │ ├── ucm/ # Unbounded Context Memory
│ │ │ ├── desc/ # IDESC v2 components
│ │ │ └── types.ts # Type definitions
│ │ ├── reasoning/ # ReasoningBank
│ │ ├── learning/ # SoNA engine
│ │ ├── routing/ # Agent routing
│ │ ├── memory/ # Memory management
│ │ └── validation/ # Input validation
│ ├── observability/ # Metrics & monitoring
│ └── universal/ # CLI interface
├── embedding-api/ # Vector embedding server
│ ├── api_embedder.py # FastAPI server (1536D)
│ ├── api-embed.sh # Service controller
│ └── requirements.txt # Python dependencies
├── .god-agent/ # Runtime data
│ ├── events.db # Event/interaction database
│ ├── sessions/ # Session state
│ └── weights/ # SoNA learned weights
├── .ucm/ # UCM hook configuration
├── .agentdb/ # Learned knowledge & patterns
├── .claude/
│ ├── agents/ # 200+ agent definitions
│ ├── commands/ # Slash commands
│ └── skills/ # Skills library
├── scripts/
│ ├── packaging/ # Setup & package scripts
│ ├── migration/ # Vector dimension migration
│ └── hooks/ # Claude Code hooks
├── serena/ # Serena MCP server
├── .serena/ # Serena config + memories
├── tests/ # Test suites
├── vector_db_1536/ # ChromaDB storage
├── docs/ # Documentation
└── package.json
If upgrading from an older version that used 768-dimension embeddings to the current 1536-dimension format:
# Detect current vector dimensions in your database
npx tsx scripts/migration/detect-vector-dimensions.ts
# Migrate vectors from 768 to 1536 dimensions
npx tsx scripts/migration/migrate-768-to-1536.tsThe migration script:
- Backs up existing data before migration
- Converts 768D vectors to 1536D using zero-padding or interpolation
- Updates all episode stores, trajectory data, and pattern embeddings
- Validates migrated vectors for correctness
# Rebuild the project
npm run build
# Or run directly with tsx
npx tsx src/god-agent/universal/cli.ts statusThe system uses a Unix socket for memory coordination. If connection fails:
# Check if socket exists
ls -la /tmp/god-agent-memory.sock
# The system will auto-create it on first use# Ensure .god-agent directory exists and is writable
mkdir -p .god-agent
chmod 755 .god-agentSome tests require specific database setup:
# Run tests with fresh database
rm -f .god-agent/events.db
npm testThe God Agent uses a local embedding server for vector similarity search. The server uses the gte-Qwen2-1.5B-instruct model (1536 dimensions).
# Create Python virtual environment
python3 -m venv ~/.venv
# Install dependencies
~/.venv/bin/pip install -r embedding-api/requirements.txt# Start ChromaDB + Embedding API
./embedding-api/api-embed.sh start
# Check status
./embedding-api/api-embed.sh status
# View logs
./embedding-api/api-embed.sh logs
# Stop services
./embedding-api/api-embed.sh stop| Service | URL | Description |
|---|---|---|
| Embedding API | http://127.0.0.1:8000 | Vector embeddings |
| ChromaDB | http://127.0.0.1:8001 | Vector storage |
The system degrades gracefully without an embedding server:
export USE_LOCAL_EMBEDDINGS=true| Metric | Target | Actual |
|---|---|---|
| Initialization | <100ms | ~70ms |
| Outcome Recording p95 | <10ms | <5ms |
| shouldInject p95 | <50ms | <30ms |
| Memory Overhead (10K outcomes) | <10MB | ~6MB |
| Agent Loading | <200ms | ~107ms |
MIT License - See LICENSE file for details.
- Create a feature branch
- Write tests first (TDD)
- Implement changes
- Run full test suite
- Submit pull request
For issues and feature requests, please use the project issue tracker.