Skip to content

tinkerfuroc/tk25_vision_train

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLO Finetuning

For identification of competition items

Requirements

Python 3.10,use pip install -r requirements.txt

Download 'sam_vit_b_01ec64.pth' to .

If you use the conda yml file, make sure to install LangSAM and SAM2 manually from github.

Dataset construction

Currently only supports live sampling through a Realsense camera.

You may change the directory of saved samples in .env. Ensure the folder under DATASET_DIR is empty (otherwise old files will be mixed into your new data).

  1. Enter the labels and their corresponding GroundingDINO prompts in resources/ontology.json

    {"<GroudingDINO prompt>" : "label"}
  2. Connect Realsense camera to computer using USB cable。

  3. cd into yolo_tuning and activate your conda environment

    conda activate visionTrain
    

4 If you wish to train regular YOLO (bounding box only), use python -m create_dataset, otherwise, for YOLO-seg, use python -m create_dataset_seg to start construction your dataset

  1. An OpenCV window should pop up, follow the instructions shown in terminal for a smooth dataset creation process!

  2. 标定完后按q结束。

Training

  1. cd into yolo_tuning

  2. use python -m prepare_dataset to split the dataset into YOLO-appropriate format

  3. Use python -m tune_YOLOv11 or python -m tune_YOLOv11_seg to start training

  4. The finishe best segmentation shall be saved to yolo_finetuned_best.pt or yolo_seg_finetuned_best.pt

Testing the result of your training

Plug in realsense, cd into yolo_tuning, and use python -m test_new_model or python -m test_new_model_seg to test your newly trained model live!

About

视觉采样与训练

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages