Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions Exercise_1.java
Original file line number Diff line number Diff line change
@@ -1,8 +1,24 @@
// Time Complexity : O(logN)
// Space Complexity : O(1)
// Did this code successfully run on Leetcode : Yes
// Any problem you faced while coding this : Yes. Initially in line 15, I added x < mid instead of x < arr[mid] and it failed on Leetcode. Fixed it later.
class BinarySearch {
// Returns index of x if it is present in arr[l.. r], else return -1
int binarySearch(int arr[], int l, int r, int x)
{
//Write your code here
while (l < r) {
int mid = (l + r) / 2;
if (x == arr[mid]) {
return mid;
}
if (x < arr[mid]) {
r = mid - 1;
} else {
l = mid + 1;
}
}
return -1;
}

// Driver method to test above
Expand Down
36 changes: 34 additions & 2 deletions Exercise_2.java
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
// Time Complexity : O(NlogN)
// Space Complexity : O(logN). Space for the recursive call.
// Did this code successfully run on Leetcode : No, did not find it on Leetcode.
// Any problem you faced while coding this : Yes, I had to watch some youtube videos to recollect quick sort.
class QuickSort
{
/* This function takes last element as pivot,
Expand All @@ -8,20 +12,48 @@ class QuickSort
of pivot */
void swap(int arr[],int i,int j){
//Your code here
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}

int partition(int arr[], int low, int high)
{
//Write code here for Partition and Swap
// Taking the last element as pivot.
int pivot = arr[high];
int i = low - 1;
// Place all elements less than pivot on the left side of the array.
for (int j = low; j < high; j ++) {
if (arr[j] <= pivot) {
i ++;
swap(arr, i, j);
}
}
// Place pivot in the partition index,
// where all elements on the left are less than pivot
// and all elements on the right are greater than the pivot.
swap(arr, i + 1, high);
// Return pivot index.
return i + 1;
}
/* The main function that implements QuickSort()
arr[] --> Array to be sorted,
low --> Starting index,
high --> Ending index */
void sort(int arr[], int low, int high)
{
// Recursively sort elements before
// partition and after partition
// Recursively sort elements before
// partition and after partition
if (low < high) {
int pivotIndex = partition(arr, low, high);
if (pivotIndex - 1 > low) {
sort(arr, low, pivotIndex - 1); // left partition
}
if (pivotIndex + 1 < high) {
sort(arr, pivotIndex + 1, high); // right partition
}
}
}

/* A utility function to print array of size n */
Expand Down
11 changes: 11 additions & 0 deletions Exercise_3.java
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
// Time Complexity : O(N)
// Space Complexity : O(1)
// Did this code successfully run on Leetcode : Yes
// Any problem you faced while coding this : No
class LinkedList
{
Node head; // head of linked list
Expand All @@ -20,6 +24,13 @@ void printMiddle()
{
//Write your code here
//Implement using Fast and slow pointers
Node slow = head;
Node fast = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
}
System.out.println(slow.data);
}

public void push(int new_data)
Expand Down
48 changes: 47 additions & 1 deletion Exercise_4.java
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
// Time Complexity : O(NlogN)
// Space Complexity : O(N). Space used for leftHalf and rightHalf arrays.
// Did this code successfully run on Leetcode : No, did not find it on Leetcode.
// Any problem you faced while coding this : Yes, I had to watch some youtube videos to recollect merge sort.
class MergeSort
{
// Merges two subarrays of arr[].
Expand All @@ -6,14 +10,56 @@ class MergeSort
void merge(int arr[], int l, int m, int r)
{
//Your code here
int leftSize = m - l + 1; // Since arr is 0 indexed, used "+ 1" to get the correct size.
int rightSize = r - m; // m index is already included in the leftSize, so no need of "+ 1" here.
int[] leftHalf = new int[leftSize];
int[] rightHalf = new int[rightSize];
// Copy left half of arr into leftHalf[]
for (int x = 0; x < leftSize; x++) {
leftHalf[x] = arr[l + x];
}
// Copy right half of arr into rightHalf[]
for (int i = 0; i < rightSize; i++) {
rightHalf[i] = arr[m + 1 + i];
}
int i = 0; // index to iterate through leftHalf[]
int j = 0; // index to iterate through rightHalf[]
int k = l; // index to iterate through arr
// Compare elements in leftHalf with rightHalf and add in the ascending order in arr.
// Note that the leftHalf and rightHalf are already sorted subarrays.
while (i < leftSize && j < rightSize) {
if (leftHalf[i] <= rightHalf[j]) {
arr[k ++] = leftHalf[i ++];
} else {
arr[k ++] = rightHalf[j ++];
}
}

// Add the remaining elements from left partition to arr, which is already sorted.
while (i < leftSize) {
arr[k ++] = leftHalf[i ++];
}
// Add the remaining elements from right partition to arr, which is already sorted.
while (j < rightSize) {
arr[k ++] = rightHalf[j ++];
}
}

// Main function that sorts arr[l..r] using
// merge()
void sort(int arr[], int l, int r)
{
//Write your code here
//Call mergeSort from here
if (l < r) {
int m = (l + r) / 2; // find mid
// Keep partitioning the left subarray in a recursive way and then merge by sorting.
sort(arr, l, m);
// Keep partitioning the right subarray in a recursive way and then merge by sorting.
sort(arr, m + 1, r);
//Call mergeSort from here
// Merge left and right partitions/subarrays in ascending order of the elements.
merge(arr, l, m, r);
}
}

/* A utility function to print array of size n */
Expand Down
49 changes: 48 additions & 1 deletion Exercise_5.java
Original file line number Diff line number Diff line change
@@ -1,20 +1,67 @@
// Time Complexity : O(NlogN)
// Space Complexity : O(1)
// Did this code successfully run on Leetcode : No, did not find it on Leetcode.
// Any problem you faced while coding this : No, working on recursive approach first helped.
import java.util.Stack;
class IterativeQuickSort {
void swap(int arr[], int i, int j)
{
//Try swapping without extra variable
if (i == j || arr[i] == arr[j]) {
// The value of XOR of two same numbers will be 0.
return;
}
arr[i] = arr[i] ^ arr[j];
arr[j] = arr[i] ^ arr[j]; // = (arr[i] ^ arr[j]) ^ arr[j] = arr[i]
arr[i] = arr[i] ^ arr[j]; // = (arr[i] ^ arr[j]) ^ arr[i] = arr[j]
}

/* This function is same in both iterative and
recursive*/
int partition(int arr[], int l, int h)
{
//Compare elements and swap.
// Taking the last element as pivot.
int pivot = arr[h];
int i = l - 1;
// Place all elements less than pivot on the left side of the array.
for (int j = l; j < h; j ++) {
if (arr[j] <= pivot) {
i ++;
swap(arr, i, j);
}
}
// Place pivot in the partition index,
// where all elements on the left are less than pivot
// and all elements on the right are greater than the pivot.
swap(arr, i + 1, h);
// Return pivot index.
return i + 1;
}

// Sorts arr[l..h] using iterative QuickSort
void QuickSort(int arr[], int l, int h)
{
//Try using Stack Data Structure to remove recursion.
Stack<Integer> stack = new Stack<>();
stack.push(l);
stack.push(h);
while (!stack.isEmpty()) {
h = stack.pop(); // h index will be popped first
l = stack.pop();
if (l < h) {
int pivotIndex = partition(arr, l, h);
if (pivotIndex - 1 > l) {
// Consider the left subarray and push the indices to the stack.
stack.push(l);
stack.push(pivotIndex - 1);
}
if (pivotIndex + 1 < h) {
// Consider the right subarray and push the indices to the stack.
stack.push(pivotIndex + 1);
stack.push(h);
}
}
}
}

// A utility function to print contents of arr
Expand Down