Machine-checked proofs in Lean 4 for results across four research papers by Murad Farzulla. All 56 theorems build against Mathlib v4.27.0 with zero errors.
Paper: Quantum Statistics from Oscillatory Sampling -- DOI: 10.5281/zenodo.18091063
| Lean theorem | Paper result | Description |
|---|---|---|
interference_two_path |
Eq. 19 | Two-path interference formula |
cross_term_eq_re_conj_mul |
Eq. 19 (corollary) | Cross-term equals Re(conj(psi_1) * psi_2) |
no_interference_when_orthogonal |
Eq. 24 | Which-path info destroys interference |
normSq_nonneg' |
Section 4.4 | Detection probabilities are non-negative |
normSq_mul' |
Section 4.5 | Intensity is multiplicative |
normSq_zero' |
Section 4.4 | Zero field gives zero intensity |
normSq_conj |
Section 4.5 | Conjugation preserves intensity |
normSq_real_mul |
Section 4.5 | Real scaling: |rz|^2 = r^2|z|^2 |
double_slit_trig |
Eq. 22 | Half-angle formula for double-slit pattern |
constructive_interference |
Eq. 22 (case) | Maxima at delta=0 give intensity 4A^2 |
destructive_interference |
Eq. 22 (case) | Minima at delta=pi give intensity 0 |
Paper: The Axiom of Consent -- DOI: 10.5281/zenodo.17684676
| Lean theorem | Paper result | Description |
|---|---|---|
friction_zero_of_stake_zero |
Section 2 | Zero stakes implies zero friction |
stake_zero_of_friction_zero |
Section 2 | Zero friction implies zero stakes |
friction_eq_zero_iff |
Section 2 | F=0 iff sigma=0 (biconditional) |
friction_pos |
Section 4, Theorem | Positive stakes generate positive friction |
friction_at_perfect_alignment |
Section 4, Corollary | F(sigma,1,0) = sigma/2 |
friction_ge_half_stake |
Section 4, Corollary | Global lower bound F >= sigma/2 |
friction_strict_anti_alignment |
Section 2 | F is strictly decreasing in alignment |
friction_strict_mono_stake |
Section 2 | F is strictly increasing in stake |
friction_strict_mono_entropy |
Section 2 | F is strictly increasing in entropy |
friction_stake_linear |
Section 2 | F scales linearly in stakes |
friction_nonneg |
Section 2 | F >= 0 for valid parameters |
friction_unbounded |
Section 4 | F diverges as alignment approaches -1 |
Paper: The Replicator-Optimization Mechanism -- DOI: 10.5281/zenodo.18090979 / arXiv: 2601.06363
| Lean theorem | Paper result | Description |
|---|---|---|
row_stochastic_sum |
Section 4.1 | Row-stochastic kernel preserves total mass |
rom_simplex_invariant |
Section 4.1 | ROM dynamics preserve probability simplex |
identity_kernel_selection |
Remark 3.1 | Identity kernel collapses transfer to selection |
identity_kernel_row_stochastic |
Remark 3.1 | Identity kernel is row-stochastic |
detailed_balance_zero_flow |
Appendix D | Detailed balance implies zero net flow |
asymmetric_kernel_no_uniform_balance |
Appendix D | Asymmetric mutation violates detailed balance |
rps_skew_symmetric |
Appendix D | RPS payoff is skew-symmetric |
rps_not_potential |
Appendix D | RPS violates potential game condition |
skew_symmetric_nonzero_not_potential |
Appendix D | Skew-symmetric entry implies non-potential |
consent_survival_mono_legitimacy |
Section 5 | Survival increases with legitimacy |
consent_survival_anti_friction |
Section 5 | Survival decreases with friction |
Paper: Identity is Irreducibly Relational -- DOI: 10.5281/zenodo.18186445
| Lean theorem | Paper result | Description |
|---|---|---|
self_not_in_refSet |
Axiom 2.2 | A is not in its own referential set |
defined_iff_refSet_nonempty |
Axiom 2.4 | Defined(A) iff R(A) is nonempty |
identity_thesis |
Theorem 2.5 | Identity presupposes relational structure |
no_self_sufficient |
Corollary 2.6 | No entity is self-sufficiently identical |
mutual_membership_of_symmetric |
Section 2 | Symmetric delta implies mutual membership |
delta_ext_of_refSet_eq |
Section 2 | Referential identity (Leibniz analogue) |
empty_ne_singleton_zero |
Proposition 4.1 | Empty set differs from {0} |
empty_set_defined |
Proposition 4.1 | Empty set is relationally defined |
empty_set_refSet_nonempty |
Proposition 4.1 | R(emptyset) is nonempty |
ne_univ_defined |
Section 4 | Non-universal sets are defined |
set_self_not_in_refSet |
Section 4 | Set instance of self-exclusion |
complex_i_ne_neg_i |
Section 7.3 | i and -i are distinct |
complex_i_sum_zero |
Section 7.3 | i + (-i) = 0 |
complex_i_sum_nonzero |
Section 7.3 | i + i != 0 |
weak_discernibility_complex |
Section 7.3 | Weak discernibility of conjugate roots |
i_squared |
Section 7.3 | i^2 = -1 |
neg_i_squared |
Section 7.3 | (-i)^2 = -1 |
vonNeumann_two |
Section 7.1 | Von Neumann encoding: 2 = {0,1} |
zermelo_two |
Section 7.1 | Zermelo encoding: 2 = {1} |
benacerraf_two |
Section 7.1 | Benacerraf: encodings of 2 diverge |
vonNeumann_succ_card |
Section 7.1 | Von Neumann successor cardinality |
zermelo_succ_card |
Section 7.1 | Zermelo successor cardinality |
Install elan (the Lean version manager):
curl https://elan.lean-lang.org/install.sh -sSf | shlake exe cache get # download pre-built Mathlib oleans (~5 min first time)
lake build # build FarzullaProofs (~30 sec)GitHub Actions runs lake build on every push via lean-action. Documentation is auto-deployed to GitHub Pages via docgen-action.
FarzullaProofs/
|-- Basic.lean # Root module documentation
|-- QuantumOscillatory/
| +-- Interference.lean # TBI-QM: 11 theorems
|-- AxiomOfConsent/
| +-- Friction.lean # AoC: 12 theorems + 1 definition
|-- ROM/
| +-- Basic.lean # ROM: 11 theorems + 3 definitions
+-- IdentityThesis/
|-- Basic.lean # Delta-framework: 6 theorems + 1 class
|-- SetTheory.lean # ZFC instance: 5 theorems + 1 instance
+-- Structuralism.lean # Weak discernibility + Benacerraf: 11 theorems + 2 defs
If you use this code in your research, please cite:
@software{farzulla2026leanformalizations,
author = {Farzulla, Murad},
title = {{FarzullaProofs}: Machine-Checked Proofs for Interdisciplinary Research},
year = {2026},
version = {1.0.0},
url = {https://github.com/studiofarzulla/lean-formalizations},
note = {Lean 4 v4.27.0, Mathlib v4.27.0}
}This work is licensed under CC BY 4.0.