Skip to content

Comprehensive organization analysis, improvement recommendations, and automation tools for SkinTwin AI GitHub organization evolution

Notifications You must be signed in to change notification settings

skintwin-ai/org-analysis

Repository files navigation

SkinTwin AI Organization Analysis & Improvement Repository

Analysis Date: January 18, 2026
Organization: skintwin-ai
Purpose: Comprehensive analysis, recommendations, and automation tools for organization evolution


πŸ“Š Overview

This repository contains a complete analysis of the SkinTwin AI GitHub organization, including:

  • Organization graph data fetched via GitHub GraphQL API
  • Comprehensive improvement recommendations across security, documentation, and collaboration
  • Automated repair scripts for common issues
  • Visualization dashboards showing organization metrics
  • Setup guides for GitHub Actions and secrets management

πŸ“ Repository Structure

skintwin-analysis/
β”œβ”€β”€ README.md                           # This file
β”œβ”€β”€ improvement_recommendations.md      # Detailed analysis and recommendations
β”œβ”€β”€ SECRETS_SETUP_GUIDE.md             # Guide for configuring GitHub secrets
β”‚
β”œβ”€β”€ Data & Analysis
β”œβ”€β”€ org_graph_data.json                # Raw organization graph from GraphQL API
β”œβ”€β”€ org_graph_analysis.json            # Processed analysis data
β”œβ”€β”€ repos_data.json                    # Repository metadata
β”‚
β”œβ”€β”€ Visualizations
β”œβ”€β”€ org_graph_visualization.png        # Organization metrics dashboard
β”œβ”€β”€ repo_timeline.png                  # Repository creation timeline
β”‚
β”œβ”€β”€ Scripts
β”œβ”€β”€ fetch_org_graph.py                 # GraphQL API script for fetching org data
β”œβ”€β”€ visualize_org_graph.py             # Visualization generation script
β”œβ”€β”€ add_repo_secrets.sh                # Script to add GitHub secrets
β”‚
└── org-skin/                          # Cloned org-skin repository for analysis

🎯 Key Findings

Organization Metrics

Metric Value
Total Repositories 18
Public Repositories 17
Private Repositories 1
Total Members 3
Total Teams 0
Organization Age 3 days

Critical Issues Identified

  1. πŸ”΄ Security: No branch protection configured (18/18 repos)
  2. πŸ”΄ Access Control: No teams configured despite 3 members
  3. 🟑 Documentation: 83% of repositories lack licenses
  4. 🟑 Standardization: Inconsistent default branch names
  5. 🟑 Engagement: Zero external stars, forks, or watchers

Technology Stack

  • Python: 6 repositories (33.3%)
  • TypeScript: 6 repositories (33.3%)
  • Mermaid: 2 repositories (11.1%)
  • PHP, HTML: 1 repository each

πŸ“ˆ Visualizations

Organization Dashboard

Organization Graph Visualization

The dashboard shows:

  • Repository visibility distribution (public vs private)
  • Programming language distribution
  • Repository features enabled (issues, wiki, discussions)
  • Activity metrics (stars, forks, issues, PRs)
  • Security configuration status
  • License distribution

Repository Timeline

Repository Timeline

Visual timeline showing repository creation dates, languages, and template status.


πŸ”§ Automation Scripts

1. Fetch Organization Graph

Fetches comprehensive organization data using GitHub GraphQL API:

python3 fetch_org_graph.py

Output:

  • org_graph_data.json - Raw GraphQL response
  • org_graph_analysis.json - Processed analysis

Features:

  • Fetches repositories, members, teams, packages
  • Analyzes languages, topics, licenses
  • Calculates activity and security metrics
  • Supports pagination for large organizations

2. Visualize Organization Data

Generates visual dashboards from analysis data:

python3 visualize_org_graph.py

Output:

  • org_graph_visualization.png - Metrics dashboard
  • repo_timeline.png - Timeline visualization

3. Add Repository Secrets

Attempts to add GitHub PAT as repository secrets:

./add_repo_secrets.sh

Note: Requires admin access to repositories. See SECRETS_SETUP_GUIDE.md for manual setup instructions.


πŸ“‹ Improvement Recommendations

Phase 1: Security & Access Control (Week 1)

Priority: Critical

  1. Enable Branch Protection on all repositories

    • Require pull request reviews (minimum 1 reviewer)
    • Require status checks to pass before merging
    • Restrict push access to admins only
  2. Create Organizational Teams

    • Core Development Team
    • Frontend Team (TypeScript/React)
    • Backend Team (Python/API)
    • DevOps Team (CI/CD)
  3. Add GitHub Secrets

    • Organization-level GH_PAT for GitHub Actions
    • Configure Dependabot for security updates

Phase 2: Documentation & Standardization (Week 2-3)

Priority: High

  1. Update Organization Profile

    • Add description, website, email, location
    • Create organization README
    • Add social media links
  2. Standardize Repository Documentation

    • Create README template
    • Add CONTRIBUTING.md to all repositories
    • Add CODE_OF_CONDUCT.md
    • Add LICENSE files (MIT recommended)
  3. Fix Branch Naming

    • Rename multiskin default branch from master to main

Phase 3: Repository Organization (Week 3-4)

Priority: Medium

  1. Consolidate Duplicate Repositories

    • Merge skintwin-customer-portal and skinport
    • Merge bus-listing and business-directory-template
  2. Add Repository Topics

    • Add 5-10 relevant topics per repository
    • Use consistent naming conventions
  3. Archive Inactive Repositories

    • Identify repositories no longer maintained
    • Archive with clear deprecation notices

Phase 4: Community Building (Week 4-6)

Priority: Medium

  1. Enable GitHub Discussions

    • Enable on 3-5 main repositories
    • Create discussion categories
    • Post initial welcome message
  2. Create Contribution Guidelines

    • Add "good first issue" labels
    • Create issue templates
    • Set up pull request templates
  3. External Promotion

    • Write blog post about the organization
    • Share on social media and relevant platforms
    • Submit to directories

Phase 5: Automation & CI/CD (Week 6-8)

Priority: Low-Medium

  1. Set Up GitHub Actions

    • Add CI/CD workflows for testing
    • Add automated dependency updates
    • Add automated security scanning
  2. Configure Dependabot

    • Enable for all repositories
    • Configure auto-merge for minor updates
  3. Add Status Badges

    • CI/CD status, code coverage, license, latest release

πŸš€ Quick Start

Prerequisites

  • Python 3.11+
  • GitHub CLI (gh)
  • GitHub Personal Access Token with appropriate permissions
  • Admin access to skintwin-ai organization (for some operations)

Setup

  1. Clone this repository:

    git clone https://github.com/skintwin-ai/org-analysis.git
    cd org-analysis
  2. Install dependencies:

    pip install requests matplotlib
  3. Set environment variables:

    export GIT_PAT_FULL="your_github_pat_here"
  4. Run analysis:

    python3 fetch_org_graph.py
    python3 visualize_org_graph.py

πŸ“– Documentation

Main Documents

  1. improvement_recommendations.md

    • Comprehensive analysis of organization health
    • Detailed recommendations with priorities
    • Action plans and timelines
    • Repository-specific recommendations
  2. SECRETS_SETUP_GUIDE.md

    • Step-by-step guide for adding GitHub secrets
    • Organization-level vs repository-level secrets
    • Creating GitHub Personal Access Tokens
    • Security best practices

Data Files

  1. org_graph_data.json

    • Raw GraphQL API response
    • Complete organization structure
    • Repository metadata, members, teams
  2. org_graph_analysis.json

    • Processed analysis data
    • Aggregated metrics
    • Repository-level insights

πŸ” Security Considerations

Secrets Management

  • Never commit secrets to this repository
  • Use environment variables for sensitive data
  • Follow the SECRETS_SETUP_GUIDE.md for proper setup
  • Rotate tokens regularly (every 90 days)

Access Control

  • Limit admin access to trusted members
  • Use teams for granular permissions
  • Enable branch protection on all repositories
  • Require code reviews for all changes

πŸ“Š Metrics to Track

Key Performance Indicators (KPIs)

Metric Current 3 Months 6 Months
Stars 0 50+ 150+
Forks 0 10+ 30+
Contributors 3 5+ 10+
Open Issues 1 10-20 20-40
Pull Requests 0 15+ 40+
Repository Topics 7 100+ 150+
Licensed Repos 3/18 18/18 18/18
Protected Branches 0/18 18/18 18/18
Active Teams 0 4+ 6+

🀝 Contributing

This is an internal analysis repository for the SkinTwin AI organization. For contributions to the main organization:

  1. Review the improvement recommendations
  2. Pick an action item from the prioritized list
  3. Create an issue in the relevant repository
  4. Submit a pull request with your changes

πŸ“ License

This analysis repository is for internal use by the SkinTwin AI organization.

For individual repository licenses, see:

  • MIT License: 2 repositories
  • AGPL v3.0: 1 repository
  • Unlicensed: 15 repositories (needs attention)

πŸ”— Related Resources

SkinTwin AI Repositories

External Resources


πŸ“ž Contact

For questions or issues related to this analysis:

  • Organization: skintwin-ai
  • Issues: Create an issue in this repository
  • Discussions: Enable GitHub Discussions (recommended)

πŸŽ‰ Acknowledgments

This analysis was generated using:

  • GitHub GraphQL API v4 for data collection
  • Python for data processing and visualization
  • Matplotlib for chart generation
  • GitHub CLI for automation

Last Updated: January 18, 2026
Maintained By: SkinTwin AI Organization
Version: 1.0.0

About

Comprehensive organization analysis, improvement recommendations, and automation tools for SkinTwin AI GitHub organization evolution

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published