Skip to content

Multiscale Skin Model with OpenCog Integration - Revolutionary cognitive architecture for biological modeling

Notifications You must be signed in to change notification settings

skintwin-ai/multiskin

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

2 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Multiscale Skin Model - OpenCog Integration

Live Demo Python React License

A revolutionary cognitive architecture that models skin biology across molecular, cellular, tissue, and organ scales using distributed AI agents and tensor field mathematics.

๐ŸŒ Live Demo

Visit the deployed website: https://77h9ikczkxjz.manus.space

๐ŸŽฏ Overview

This project represents a groundbreaking approach to biological modeling that combines:

  • Quantitative Multiscale Physics - Tensor field mathematics spanning nanometers to centimeters
  • Qualitative Cognitive Reasoning - Distributed AI agents for intelligent analysis
  • OpenCog Integration - Symbolic reasoning and atomspace representation
  • JAX-based Neural Computation - High-performance gradient-based optimization

โœจ Key Features

๐Ÿ”ฌ Multiscale Modeling

  • Molecular Scale (nanometers): Lipid bilayers, ceramides, cholesterol, free fatty acids
  • Cellular Scale (micrometers): Keratinocytes, melanocytes, fibroblasts, immune cells
  • Tissue Scale (millimeters): Epidermis, dermis, hypodermis layers
  • Organ Scale (centimeters): Complete skin barrier function

๐Ÿง  Cognitive AI Agents

  • Deep Tree Echo: Novelty detection and exploration, prime factor analysis
  • Marduk: Metric tensor analysis, categorical logic frameworks
  • CEO (JAX-based): Cognitive Execution Orchestration, neural computation

๐Ÿ“Š Real-time Analysis

  • Gradient field dynamics (pH, water activity, lipid concentration)
  • Emergent phenomena detection
  • Pattern recognition and classification
  • Cross-scale coupling operators

๐ŸŽจ Interactive Visualization

  • Web-based interface with React and D3.js
  • Real-time simulation controls
  • System metrics dashboard
  • Network visualization

๐Ÿ—๏ธ Architecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                   Interface Layer                        โ”‚
โ”‚        (Web UI, Visualization, User Interaction)         โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                           โ†“
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                   Cognitive Layer                        โ”‚
โ”‚     (Deep Tree Echo, Marduk, CEO Agents)                โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                           โ†“
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                 Integration Layer                        โ”‚
โ”‚        (AtomSpace Bridge, Cognitive Patterns)            โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                           โ†“
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚              Biological Modeling Layer                   โ”‚
โ”‚  (Tensor Fields, Gradient Dynamics, Cross-Scale Coupling)โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿš€ Quick Start

Prerequisites

  • Python 3.11+
  • Node.js 20+
  • JAX and JAXlib
  • Flask
  • React

Installation

# Clone the repository
git clone https://github.com/skintwin-ai/multiskin.git
cd multiskin

# Backend setup
cd backend
pip install -r requirements.txt

# Frontend setup
cd ../frontend
npm install

# Start development servers
# Terminal 1 - Backend
cd backend && python src/main.py

# Terminal 2 - Frontend
cd frontend && npm run dev

Docker Setup (Alternative)

docker-compose up --build

๐Ÿ“š Documentation

Comprehensive documentation is available at the live website or in the /docs directory:

๐ŸŽฎ Usage Examples

Basic System Initialization

from src.main_integration import create_multiscale_skin_system

# Create and configure the system
system = create_multiscale_skin_system()

# Start the cognitive agents
system.start_system()

# Run simulation
for step in range(100):
    result = system.simulate_step(dt=0.01)
    print(f"Step {step}: {result['patterns_detected']} patterns detected")

Tensor Field Analysis

from src.tensor_field import TensorFieldModel, ScaleLevel
import jax.numpy as jnp

# Initialize tensor field model
model = TensorFieldModel()

# Create pH field at tissue scale
ph_field = model.create_field(
    scale=ScaleLevel.TISSUE,
    field_type="ph",
    initial_values=jnp.linspace(5.5, 7.4, 100)
)

# Compute gradients
gradient = model.compute_gradient(ph_field)
print(f"pH gradient magnitude: {gradient.magnitude}")

Cognitive Agent Interaction

from src.cognitive_agents import CognitiveAgentSystem, AgentType

# Initialize agent system
agents = CognitiveAgentSystem()

# Get insights from different agents
deep_tree_insights = agents.get_agent_insights(AgentType.DEEP_TREE_ECHO)
marduk_analysis = agents.get_agent_insights(AgentType.MARDUK)
ceo_coordination = agents.coordinate_agents(deep_tree_insights, marduk_analysis)

๐Ÿ“Š Project Structure

multiskin/
โ”œโ”€โ”€ src/                          # Core Python implementation
โ”‚   โ”œโ”€โ”€ main_integration.py       # Main system integration
โ”‚   โ”œโ”€โ”€ tensor_field.py           # Tensor field modeling
โ”‚   โ”œโ”€โ”€ gradient_dynamics.py      # Gradient field dynamics
โ”‚   โ”œโ”€โ”€ cross_scale_coupling.py   # Cross-scale operators
โ”‚   โ”œโ”€โ”€ atomspace_bridge.py       # OpenCog integration
โ”‚   โ”œโ”€โ”€ cognitive_agents.py       # AI agent system
โ”‚   โ””โ”€โ”€ scale_mappings.py         # Scale transformations
โ”œโ”€โ”€ frontend/                     # React web interface
โ”‚   โ”œโ”€โ”€ src/
โ”‚   โ”‚   โ”œโ”€โ”€ App.jsx              # Main application
โ”‚   โ”‚   โ””โ”€โ”€ components/          # React components
โ”‚   โ””โ”€โ”€ index.html               # Entry point
โ”œโ”€โ”€ backend/                      # Flask API
โ”‚   โ””โ”€โ”€ src/
โ”‚       โ”œโ”€โ”€ main.py              # Flask application
โ”‚       โ””โ”€โ”€ routes/              # API routes
โ”œโ”€โ”€ docs/                         # Documentation
โ”œโ”€โ”€ tests/                        # Test suite
โ”œโ”€โ”€ visualization/                # Images and diagrams
โ””โ”€โ”€ README.md                     # This file

๐Ÿ”ฌ Mathematical Framework

Tensor Field Equations

โˆ‚T/โˆ‚t + โˆ‡ยท(vT) = Dโˆ‡ยฒT + S(T) + C(T,s)

Where:

  • T: Tensor field (pH, water activity, lipid concentration)
  • v: Velocity field
  • D: Diffusion tensor
  • S(T): Source/sink terms
  • C(T,s): Cross-scale coupling terms

Cross-Scale Coupling

ฮจ(sโ‚โ†’sโ‚‚) = โˆซ K(x,x',sโ‚,sโ‚‚) T(x',sโ‚) dx'

Where:

  • ฮจ: Cross-scale coupling operator
  • K: Coupling kernel
  • sโ‚, sโ‚‚: Source and target scales

๐Ÿงช Testing

# Run all tests
python -m pytest tests/

# Run specific test
python -m pytest tests/test_integration.py

# Run with coverage
python -m pytest --cov=src tests/

๐Ÿค Contributing

Contributions are welcome! Please read our Contributing Guidelines before submitting pull requests.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ™ Acknowledgments

  • OpenCog Foundation for the cognitive architecture framework
  • JAX team for the high-performance numerical computation library
  • The multiscale modeling community for inspiration and guidance

๐Ÿ“ง Contact

๐ŸŒŸ Star History

If you find this project useful, please consider giving it a star! โญ


Made with โค๏ธ using Manus AI

About

Multiscale Skin Model with OpenCog Integration - Revolutionary cognitive architecture for biological modeling

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published