A revolutionary cognitive architecture that models skin biology across molecular, cellular, tissue, and organ scales using distributed AI agents and tensor field mathematics.
Visit the deployed website: https://77h9ikczkxjz.manus.space
This project represents a groundbreaking approach to biological modeling that combines:
- Quantitative Multiscale Physics - Tensor field mathematics spanning nanometers to centimeters
- Qualitative Cognitive Reasoning - Distributed AI agents for intelligent analysis
- OpenCog Integration - Symbolic reasoning and atomspace representation
- JAX-based Neural Computation - High-performance gradient-based optimization
- Molecular Scale (nanometers): Lipid bilayers, ceramides, cholesterol, free fatty acids
- Cellular Scale (micrometers): Keratinocytes, melanocytes, fibroblasts, immune cells
- Tissue Scale (millimeters): Epidermis, dermis, hypodermis layers
- Organ Scale (centimeters): Complete skin barrier function
- Deep Tree Echo: Novelty detection and exploration, prime factor analysis
- Marduk: Metric tensor analysis, categorical logic frameworks
- CEO (JAX-based): Cognitive Execution Orchestration, neural computation
- Gradient field dynamics (pH, water activity, lipid concentration)
- Emergent phenomena detection
- Pattern recognition and classification
- Cross-scale coupling operators
- Web-based interface with React and D3.js
- Real-time simulation controls
- System metrics dashboard
- Network visualization
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Interface Layer โ
โ (Web UI, Visualization, User Interaction) โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Cognitive Layer โ
โ (Deep Tree Echo, Marduk, CEO Agents) โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Integration Layer โ
โ (AtomSpace Bridge, Cognitive Patterns) โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Biological Modeling Layer โ
โ (Tensor Fields, Gradient Dynamics, Cross-Scale Coupling)โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Python 3.11+
- Node.js 20+
- JAX and JAXlib
- Flask
- React
# Clone the repository
git clone https://github.com/skintwin-ai/multiskin.git
cd multiskin
# Backend setup
cd backend
pip install -r requirements.txt
# Frontend setup
cd ../frontend
npm install
# Start development servers
# Terminal 1 - Backend
cd backend && python src/main.py
# Terminal 2 - Frontend
cd frontend && npm run devdocker-compose up --buildComprehensive documentation is available at the live website or in the /docs directory:
from src.main_integration import create_multiscale_skin_system
# Create and configure the system
system = create_multiscale_skin_system()
# Start the cognitive agents
system.start_system()
# Run simulation
for step in range(100):
result = system.simulate_step(dt=0.01)
print(f"Step {step}: {result['patterns_detected']} patterns detected")from src.tensor_field import TensorFieldModel, ScaleLevel
import jax.numpy as jnp
# Initialize tensor field model
model = TensorFieldModel()
# Create pH field at tissue scale
ph_field = model.create_field(
scale=ScaleLevel.TISSUE,
field_type="ph",
initial_values=jnp.linspace(5.5, 7.4, 100)
)
# Compute gradients
gradient = model.compute_gradient(ph_field)
print(f"pH gradient magnitude: {gradient.magnitude}")from src.cognitive_agents import CognitiveAgentSystem, AgentType
# Initialize agent system
agents = CognitiveAgentSystem()
# Get insights from different agents
deep_tree_insights = agents.get_agent_insights(AgentType.DEEP_TREE_ECHO)
marduk_analysis = agents.get_agent_insights(AgentType.MARDUK)
ceo_coordination = agents.coordinate_agents(deep_tree_insights, marduk_analysis)multiskin/
โโโ src/ # Core Python implementation
โ โโโ main_integration.py # Main system integration
โ โโโ tensor_field.py # Tensor field modeling
โ โโโ gradient_dynamics.py # Gradient field dynamics
โ โโโ cross_scale_coupling.py # Cross-scale operators
โ โโโ atomspace_bridge.py # OpenCog integration
โ โโโ cognitive_agents.py # AI agent system
โ โโโ scale_mappings.py # Scale transformations
โโโ frontend/ # React web interface
โ โโโ src/
โ โ โโโ App.jsx # Main application
โ โ โโโ components/ # React components
โ โโโ index.html # Entry point
โโโ backend/ # Flask API
โ โโโ src/
โ โโโ main.py # Flask application
โ โโโ routes/ # API routes
โโโ docs/ # Documentation
โโโ tests/ # Test suite
โโโ visualization/ # Images and diagrams
โโโ README.md # This file
โT/โt + โยท(vT) = DโยฒT + S(T) + C(T,s)
Where:
T: Tensor field (pH, water activity, lipid concentration)v: Velocity fieldD: Diffusion tensorS(T): Source/sink termsC(T,s): Cross-scale coupling terms
ฮจ(sโโsโ) = โซ K(x,x',sโ,sโ) T(x',sโ) dx'
Where:
ฮจ: Cross-scale coupling operatorK: Coupling kernelsโ, sโ: Source and target scales
# Run all tests
python -m pytest tests/
# Run specific test
python -m pytest tests/test_integration.py
# Run with coverage
python -m pytest --cov=src tests/Contributions are welcome! Please read our Contributing Guidelines before submitting pull requests.
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- OpenCog Foundation for the cognitive architecture framework
- JAX team for the high-performance numerical computation library
- The multiscale modeling community for inspiration and guidance
- Project Website: https://77h9ikczkxjz.manus.space
- GitHub: https://github.com/skintwin-ai/multiskin
- Issues: https://github.com/skintwin-ai/multiskin/issues
If you find this project useful, please consider giving it a star! โญ
Made with โค๏ธ using Manus AI