Skip to content

salva24/GAUFS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GAUFS

Usage

To execute the code:

  1. Place your datasets as CSV files in the datasets/ folder
  2. Ensure your CSV files follow this format:
    • Column headers: var-0,var-1,var-2,var-3,...,var-n,ETIQ
    • Values should be normalized between [0,1]
    • ETIQ is the target column for classification
  3. Run the main script:
    python main.py

After execution, results will be generated in the results/ folder. The script will automatically process all CSV files in the datasets/ folder and generate analysis results including clustering metrics and visualizations.

Project Structure

  • datasets/ - Input CSV files for analysis
  • results/ - Generated output files and visualizations
  • src/ - Source code modules
    • build_test_genetic_2.py - Main test builder
    • genetic2_parallel.py - Parallel genetic algorithm implementation
    • alg_clustering.py - Clustering algorithms and metrics
    • analysis_weighted_variables_num_cluster.py - Variable analysis tools
    • data_generators - Methods related to synthetic data generation. The file can be executed to generate an example of a corners dataset on ./datasets/synthetic_data_corners.csv
  • main.py - Main execution script for GAUFS algorithm/
  • comparison/ — Files used for comparison with the AutoUFS tool.
    • dataset-papers/ — Input CSV files for the comparison.
    • results-papers/ — Output results, containing one folder for each compared dataset.
    • AutoUFSTool-main/ — Folder cloned from the AutoUFS-tool GitHub repository.
      • main-comparison.m — MATLAB script to run the comparison.
    • alg_clustering.py — Python module with utility functions for clustering.
    • automate_v2.py — Python script to run the automatic comparison process.
    • datasets_mat.ipynb — Jupyter notebook with tools for converting CSV files into MATLAB structures.

About

Genetic Algorithm for Unsupervised Feature Selection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •