Skip to content

ruidazeng/vr-navigation

Repository files navigation

VR Maze Environment

🧭 VR Navigation Analysis


Cluster Analysis on Subject Data in Immersive Virtual Environments

A framework for analyzing navigation patterns in virtual reality environments
using k-means clustering to identify behavioral strategies in maze exploration

Ruida Zeng, Richard Paris, Bobby Bodenheimer

Learning in Virtual Environments (LIVE) Lab, Vanderbilt University

Python NumPy scikit-learn License

OverviewTeamQuick StartResultsStructureRequirementsDocumentation


Overview

Analysis of navigation patterns from ~200 subjects in an immersive virtual maze environment. This research was conducted during the 2019 VUSE Undergraduate Summer Research Program.

The project applies k-means clustering to identify distinct navigation strategies and behavioral patterns as subjects explore and learn a virtual maze over 10-minute sessions.

Research Poster


Team

Role Name Contribution
Primary Investigator Dr. Bobby Bodenheimer Project oversight, EECS Department
Graduate Research Assistant Richard Paris VR environment creation (Unity), experiment design
Undergraduate Researcher Ruida Zeng Data analysis, clustering algorithms

📧 Contact: ruida dot zeng at vanderbilt dot edu


Quick Start

Installation

# Clone the repository
git clone https://github.com/ruidazeng/vr-navigation.git
cd vr-navigation

# Install dependencies
pip install -r requirements.txt

Run Examples

# Visualize a subject's navigation path
python visualization/visual.py

# Run k-means clustering on all subjects
python clustering/km_vector.py

# View 3D temporal clustering
python clustering/km_3d.py

Results


K-Means Clustering

3D Temporal View

Temporal Color Coding

Path Visualization

Project Structure

vr-navigation/
├── clustering/          # K-means clustering algorithms
├── visualization/       # Data visualization scripts  
├── preprocessing/       # Legacy data parsing scripts
├── Parsed Data/         # 143 subject CSV files
└── Resources/           # Images and documentation
Directory Description Docs
clustering/ K-means clustering for navigation pattern analysis 📖 README
visualization/ Matplotlib and turtle graphics visualizations 📖 README
preprocessing/ Legacy scripts for parsing raw experimental data 📖 README
Parsed Data/ 143 parsed CSV files with subject navigation data 📖 README

Requirements

Package Version Purpose
numpy 1.19+ Numerical computing
pandas 1.0+ Data manipulation
scikit-learn 0.24+ K-means clustering
matplotlib 3.3+ Visualization
pip install -r requirements.txt

Documentation

Document Description
Clustering Scripts K-means algorithms and usage
Visualization Scripts Path visualization tools
Preprocessing Scripts Legacy data parsing documentation
Parsed Data Data format and subject status
LICENSE License information

Made with ❤️ at Vanderbilt University • 2019 Summer Research

About

Cluster analysis on subject data in immersive virtual environments.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages