conda env create -f environment.yml
conda activate maskgit
python training_transformer.py
python inpainting.py
(Make sure to edit the path for the dataset or checkpoint path etc.)
sftp -P 10046 pp037@140.113.215.196 (passwd: pp037OnClass)
sftp pp037@192.168.201.46 (passwd: pp037OnClass)
get lab5_dataset.zip
get VQGAN.pt
cd faster-pytorch-fid
python fid_score_gpu.py --predicted-path /path/your_inpainting_results_folder --device cuda:0
- Dataset Download
- MaskGIT STAGE1 Training enc, codebook, dec... Pretrained Weight (./models/VQGAN/checkpoints/)
- MultiHeadAttetion forward (./models/Transformer/modules/layers.py class MultiHeadAttetion)
- MaskGIT STAGE2 Training Transformer (./training_transformer.py ./models/VQGAN_Transformer.py)
- Implement functions for inpainting (./inpainting.py ./models/VQGAN_Transformer.py)
- Experiment Score