MultiPoint calculation for block copolymers.
The file with the same name except for different extensions (.py vs .ipynb) stand for the same code. The documentations is in the ipynb while you can import the .py file.
This does the 2,3, and 4 point intigrals over propagators. See Example.ipynb for how to use. This imports special.py which are just some usefull functions.
This calculates the eigenvalues, residue, and the like for the worm like chain propagator.
This is a simple class structure to keep track of propagators.
from scatter import *N=10 # number of Kuhn steps per chain
KV = np.logspace(-1,2,100) # wavevector in unit of 1/(Kuhn step)
S = scatter_pol(KV, N)plt.figure(figsize=(6,4.5))
plt.title('N='+str(N))
plt.loglog(KV, S, label='$I_{2}$')
plt.show()N=10 # number of Kuhn steps per chain
KV = np.logspace(-1,2,100) # wavevector in unit of 1/(Kuhn step)
FA=0.5 # fraction of A-type segment
CHI = 0 # Flory-Huggins parameter between A-B monomers
S = scatter_copol(KV, N, FA, CHI)plt.figure(figsize=(6,4.5))
plt.loglog(KV, S, label='$I_{2}$')
plt.show()N=10
FA=0.4
CHIAB, CHIAS, CHIBS = 0, 0, 0
PHIP = 0.2
KV = np.logspace(-1,3,100)
S = scatter_sol(KV, N, FA, PHIP, CHIAB, CHIAS, CHIBS)plt.loglog(KV, 1./(N*S)/PHIP)
plt.ylabel('S/N')
plt.xlabel('2$l_p$q')
plt.show()

