Skip to content

qduc/code-rag

Repository files navigation

Code-RAG

PyPI version Build Status License: MIT Python Versions

Semantic code search for your entire codebase. Ask questions in plain English, get relevant code snippets with source locations.

Instead of grepping for function names, ask "authentication logic" and find all related auth code across your project.

Table of Contents

Quick Start

1. Install

Using uv (recommended):

uvx --from code-rag-mcp code-rag-setup --install

Note: This ensures your configuration persists even after updates.

Using pip:

pip install code-rag-mcp && code-rag-setup

New to Python? Use the one-command installer:

curl -sSL https://raw.githubusercontent.com/qduc/code-rag/main/scripts/install.sh | bash

2. Add to Claude

claude mcp add code-rag -- code-rag-mcp

That's it! Claude can now search your codebase semantically.

3. Try it out (optional)

Test with the CLI before using with Claude:

code-rag-cli --path /path/to/your/project

Claude's Opinion About Code-RAG (take it with a huge grain of salt!)

I have taken a lot of salt, show me!

Code-RAG Review

I ran 9 diverse semantic queries to test the tool across different aspects of the codebase. Here's my assessment:

Strengths

  1. Excellent Semantic Understanding
  • Query "shared embedding server lifecycle management" correctly identified the core design documentation and implementation (0.54 relevance)
  • "syntax-aware chunking for different languages" found both the implementation guide and actual code
  • Searches understood concepts, not just keywords - found relevant code even when exact terms didn't match
  1. Good Relevance Scoring
  • Scores generally correlate well with actual relevance (0.4-0.6+ range for good matches)
  • Top results consistently more relevant than lower-ranked ones
  • The tool correctly prioritizes implementation code over test fixtures
  1. Metadata Quality
  • Results include file paths, line numbers, and function/class context
  • Example: src/code_rag/api.py:443-462 incremental_reindex() | CodeRAGAPI (0.61)
  • This makes it easy to navigate to the exact location
  1. Handles Complex Queries Well
  • Multi-concept queries like "incremental reindexing detect modified files" found the right code
  • Domain-specific terminology works well ("embedding model configuration", "MCP server tools")

Weaknesses

  1. Generic Queries Return Scattered Results
  • "error handling and retry logic" (query 5) returned less focused results
  • Found timeout handlers, error printing, but no cohesive retry logic
  • This is expected for overly broad queries, but worth noting
  1. Some Test Code Noise
  • "database initialization and connection" returned test fixtures as top results instead of actual implementation
  • The mock database in test_mcp_server.py ranked higher (0.45) than real database code (0.35)
  • Could be improved with result filtering or boosting production code
  1. Limited Context Window
  • Results show ~20-30 lines per chunk, which is reasonable but sometimes cuts off mid-implementation
  • The expand_context parameter helps but isn't always used

Specific Observations

What Works Great:

  • Architecture/design queries: "shared embedding server lifecycle management" → perfect results
  • Implementation queries: "syntax-aware chunking" → found both docs and code
  • Specific subsystem queries: "incremental reindexing" → found the exact functions

What Could Be Better:

  • Very broad queries ("error handling") need more filtering
  • Test vs. production code disambiguation
  • Maybe add file type boosting (prefer src/ over tests/)

Recommendations

  1. Add query guidance in the tool description - Users should know that specific queries work better than generic ones (you already have this in the MCP tool description, which is good)
  2. Consider result filtering options - Allow excluding test files or prioritizing certain directories
  3. Expand context by default - The expand_context parameter could be enabled by default for better chunk visibility
  4. Add result grouping - Group results by file to show "This file has 3 relevant chunks"

Overall Assessment

Rating: 8.5/10

The semantic search works remarkably well for its intended purpose. It successfully finds relevant code based on conceptual queries, not just keyword matching. The relevance scoring is solid, and the metadata makes results actionable.

The main improvement areas are around filtering test code and handling overly broad queries. For a developer using this tool, the key insight is: be specific in your queries. "authentication token refresh logic" will work better than just "authentication."

This is a genuinely useful tool that would save significant time when exploring unfamiliar codebases.

Why Use Code-RAG?

  • Understand unfamiliar codebases - Ask questions instead of reading everything
  • Find examples - "error handling with retries" finds all relevant patterns
  • Refactoring aid - Locate all code related to a feature you're changing
  • Documentation - Extract context for writing docs or onboarding

Use with Claude Code (MCP Integration)

Code-RAG works as an MCP server, letting Claude automatically search your codebase during conversations.

Note on uv: Many examples below use uv (specifically uvx) for fast, zero-config execution. If you don't have uv installed, you can use standard pip or npx (if using a wrapper).

Quick Setup

Option 1: Using uvx (Recommended)

# Install uv first: https://github.com/astral-sh/uv

# Claude Code
claude mcp add code-rag --transport stdio uvx code-rag-mcp

Option 2: Using pip (Standard)

# Install in your environment
pip install code-rag-mcp

# Register with Claude Code using the absolute path to the binary
claude mcp add code-rag --transport stdio $(which code-rag-mcp)

Option 3: Local development installation

# Clone and install
git clone https://github.com/qduc/code-rag.git
cd code-rag
python -m venv .venv
source .venv/bin/activate
pip install -e .

# Register with Claude Code
claude mcp add code-rag --transport stdio $(which code-rag-mcp)

Configuration

The MCP server reads configuration from environment variables or config files. Configure via your MCP client's settings:

Claude Desktop (~/Library/Application Support/Claude/claude_desktop_config.json):

{
  "mcpServers": {
    "code-rag": {
      "command": "uvx",
      "args": ["code-rag-mcp"],
      "env": {
        "CODE_RAG_EMBEDDING_MODEL": "nomic-ai/CodeRankEmbed",
        "CODE_RAG_DATABASE_TYPE": "chroma",
        "CODE_RAG_RERANKER_ENABLED": "true"
      }
    }
  }
}

Claude Code (via claude mcp add):

# Basic setup
claude mcp add code-rag --transport stdio uvx code-rag-mcp

# Then configure via environment variables or config files

Common Configuration Options:

  • CODE_RAG_EMBEDDING_MODEL - Embedding model (default: nomic-ai/CodeRankEmbed)
    • nomic-ai/CodeRankEmbed - Code-optimized, runs locally, requires GPU for best performance
    • text-embedding-3-small - OpenAI embeddings, no GPU required (requires OPENAI_API_KEY)
  • CODE_RAG_DATABASE_TYPE - Database backend: chroma or qdrant (default: chroma)
  • CODE_RAG_CHUNK_SIZE - Chunk size in characters (default: 1024)
  • CODE_RAG_RERANKER_ENABLED - Enable result reranking, may yield better results but slower (default: false)
  • CODE_RAG_SHARED_SERVER - Share embedding server across instances, reduce memory footprint (default: true)

Example with OpenAI embeddings:

{
  "mcpServers": {
    "code-rag": {
      "command": "uvx",
      "args": ["code-rag-mcp"],
      "env": {
        "CODE_RAG_EMBEDDING_MODEL": "text-embedding-3-small",
        "OPENAI_API_KEY": "sk-...",
        "CODE_RAG_RERANKER_ENABLED": "true"
      }
    }
  }
}

Usage

Once configured, Claude can automatically search your codebase:

You: "Find the database connection logic"

Claude: [Automatically searches and finds the code]
        "I found the database connection logic in src/code_rag/db/connection.py..."

See docs/mcp.md for detailed setup and troubleshooting.

Basic Usage

# Different codebase
code-rag-cli --path /path/to/repo

# Force reindex
code-rag-cli --reindex

# More results
code-rag-cli --results 10

# Different embedding model (better for code)
code-rag-cli --model text-embedding-3-small # need to set OPENAI_API_KEY env

# Use Qdrant instead of ChromaDB
code-rag-cli --database qdrant

Configuration

Priority Order

Configuration is loaded in this order (higher priority overrides lower):

  1. Environment variables (highest priority)
  2. Custom config file via CODE_RAG_CONFIG_FILE environment variable
  3. Project config: ./code-rag.config
  4. User config: ~/.config/code-rag/config (auto-created with defaults)

For MCP servers: Set environment variables in your MCP client config (see MCP Integration section above).

For CLI usage: Use environment variables or config files.

Environment Variables

# Use code-optimized embeddings (recommended)
export CODE_RAG_EMBEDDING_MODEL="nomic-ai/CodeRankEmbed"

# Or OpenAI embeddings
export OPENAI_API_KEY="sk-..."
export CODE_RAG_EMBEDDING_MODEL="text-embedding-3-small"

# Use Qdrant
export CODE_RAG_DATABASE_TYPE="qdrant"

# Adjust chunk size
export CODE_RAG_CHUNK_SIZE="2048"

# Enable reranking for better results
export CODE_RAG_RERANKER_ENABLED="true"

# Add custom ignore patterns (comma-separated)
export CODE_RAG_ADDITIONAL_IGNORE_PATTERNS="*.tmp,*.bak,logs/"

Supported Cloud Providers

Code-RAG supports various cloud embedding providers via LiteLLM. Set CODE_RAG_EMBEDDING_MODEL to the provider-specific model name and provide the necessary credentials:

Provider Model Example Required Environment Variables
OpenAI text-embedding-3-small OPENAI_API_KEY
Azure OpenAI azure/text-embedding-3-small AZURE_API_KEY, AZURE_API_BASE, AZURE_API_VERSION
Google Vertex AI vertex_ai/text-embedding-004 VERTEX_AI_PROJECT, VERTEX_AI_LOCATION, plus gcloud auth application-default login
Cohere cohere/embed-english-v3.0 COHERE_API_KEY
AWS Bedrock bedrock/amazon.titan-embed-text-v1 AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION_NAME

For other providers (HuggingFace, Mistral, etc.), refer to the LiteLLM documentation for model names and required environment variables.

Config File Format

Config files use the same format (key=value):

# ~/.config/code-rag/config or ./code-rag.config
CODE_RAG_EMBEDDING_MODEL=nomic-ai/CodeRankEmbed
CODE_RAG_DATABASE_TYPE=chroma
CODE_RAG_CHUNK_SIZE=1024
CODE_RAG_RERANKER_ENABLED=false

Full configuration options in docs/IMPLEMENTATION.md.

How It Works

  1. Scans your codebase (respects .gitignore)
  2. Chunks code intelligently (syntax-aware for Python, JS, Go, Rust, Java, C/C++)
  3. Embeds chunks as vectors using ML models
  4. Stores in vector database (ChromaDB or Qdrant)
  5. Searches semantically when you query

Pluggable architecture - swap databases, embedding models, or add new ones.

API Usage

Use programmatically:

from code_rag.api import CodeRAGAPI

api = CodeRAGAPI(database_type="chroma", embedding_model="all-MiniLM-L6-v2")
api.initialize_collection("myproject")

# Index
chunks = api.index_codebase("/path/to/project")

# Search
results = api.search("authentication logic", n_results=5)
for r in results:
    print(f"{r['file_path']} - {r['similarity']:.2f}")

Documentation

Supported Languages

Syntax-aware chunking for: Python, JavaScript, TypeScript, Go, Rust, Java, C, C++

Other languages use line-aware chunking (still works, just less context-aware).

Requirements

  • Python 3.10+
  • Minimal dependencies (ChromaDB + sentence-transformers by default)
  • Optional: OpenAI API key, Qdrant server

Troubleshooting

Import errors? pip install --force-reinstall --upgrade code-rag-mcp (or pip install -e . if developing locally)

Database issues? code-rag-cli --reindex

Memory issues? export CODE_RAG_BATCH_SIZE="16"

Development

Setup

# Install with dev dependencies
pip install -e ".[dev]"

Testing & Linting

# Run tests
pytest

# Format code
black .
isort .

# Linting
flake8

Contributing

  1. Fork the repo
  2. Create feature branch
  3. Make changes
  4. Add tests
  5. Submit PR

See AGENTS.md for architecture and docs/IMPLEMENTATION.md for internals.

License

MIT License. See LICENSE for details.


Built with ChromaDB, Qdrant, sentence-transformers, and Tree-sitter

About

An MCP server that add semantic code search to your coding agent

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published