Skip to content

prashantchauhan-12/python-for-data-science

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python for Data Science

This repository contains a comprehensive collection of Jupyter Notebooks covering Python fundamentals, core programming concepts, and essential libraries for Data Science as part of an AI & ML learning path.

📂 Repository Structure

The notebooks are organized by topic:

🔹 Python Fundamentals

  • Variables & Keywords: 1.Variables & Keywords.ipynb
  • Datatypes: Datatypes.ipynb
  • Arithmetic Operations: 2.2Arithmetic Operations.ipynb
  • String Operations: 2.1String Operations.ipynb

🔹 Control Flow & Functions

  • Control Structures: Control Structures.ipynb
  • Loops & Iteration: Loops & Iteration.ipynb
  • Functions: Functions.ipynb
  • Exception Handling: Exception Handling.ipynb

🔹 Data Structures

  • Lists: Lists.ipynb
  • Tuples: Tuples.ipynb
  • Dictionaries: Dictionary.ipynb
  • Sets: Sets.ipynb

🔹 Advanced Python

  • Object-Oriented Programming (OOP): OOPs in Python.ipynb
  • File Handling: File Handling.ipynb
  • Iterators & Generators: Iterators & Generators.ipynb
  • Map, Reduce & Filter: map,reduce & filter.ipynb

🔹 Data Science Libraries

  • NumPy (Numerical Computing): NumPy.ipynb
  • Pandas (Data Manipulation): Pandas.ipynb
  • Matplotlib (Visualization): Matplotlib.ipynb, Matplotlib-TL.ipynb
  • Seaborn (Advanced Visualization): Seaborn.ipynb, Seaborn-TL.ipynb

🔹 Statistics

  • Normal Distribution & CLT: Normal_Distribution_+_CLT.ipynb

📊 Datasets

  • Churn_Modelling.csv: Used for data analysis examples.

🚀 Getting Started

To explore these notebooks:

  1. Clone the repository:
    git clone <repository-url>
  2. Install dependencies (recommended using Anaconda or pip):
    pip install notebook numpy pandas matplotlib seaborn
  3. Launch Jupyter Notebook:
    jupyter notebook

📝 Prerequisites

  • Basic understanding of programming logic.
  • Python installed (likely via Anaconda Distribution for Data Science).

🎓 Acknowledgments

These notebooks and materials are based on a Data Science course by Satyajit Pattnaik. They serve as my personal study notes and practice exercises from the curriculum taught by the instructor.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published