Skip to content

ncxlib/NeuralNetwork

Repository files navigation

NCxLib: A Lightweight Neural Network Library in Python

ncxlib is a lightweight and easy-to-use neural network library built in Python. It provides a simple API for constructing and training neural networks, along with tools for data preprocessing and generation.

Features

  • Modular Design: Easily build custom neural networks by combining different layers, activation functions, and loss functions.
  • Data Handling: Includes data loaders for CSV and image data, with preprocessing capabilities like scaling and grayscaling.
  • Training and Evaluation: Train your networks with various optimization algorithms and evaluate their performance.
  • Extensible: Add your own custom layers, activations, and loss functions to expand the library's functionality.

Installation

pip install ncxlib

Getting Started

Here's a quick example of how to use ncxlib to create and train a simple neural network:

# External imports
import numpy as np

# Util imports
from ncxlib import generators, dataloaders, optimizers, losses, activations
from ncxlib.util import train_test_split

# Neural network imports
from ncxlib.models.neuralnetwork import NeuralNetwork, FullyConnectedLayer
from ncxlib.initializers import HeNormal, Zero


# ------- Generate some data using generators -------
generators.generate_training_data(to_csv=True)

# ------- Load data from generated csv and split it into train and test -------
loader = dataloaders.CSVDataLoader("training_data.csv")
X, y = loader.get_data()
X_train, X_test, y_train, y_test = train_test_split(X, y)


# ------- Configure model layers -------
model = NeuralNetwork([
    FullyConnectedLayer(
        n_neurons=3, 
        activation=activations.ReLU, 
        optimizer=optimizers.Adam(beta_1=0.9, beta_2=0.999, epsilon=1e-07),
        name="first_hidden",
        weights_initializer=HeNormal(), 
        bias_initializer=Zero()
        ),

    FullyConnectedLayer(
        n_neurons=5, 
        activation=activations.ReLU, 
        optimizer=optimizers.SGDMomentum(momentum = 0.9), 
        name="second_hidden",
        initializer=HeNormal(),
        ),

    FullyConnectedLayer(
        n_neurons=2, 
        activation=activations.Sigmoid, 
        optimizer=optimizers.RMSProp(decay_rate = 0.8)
        )
],
    loss_fn=losses.BinaryCrossEntropy
)

# ------- Train model and evaluate accuracy -------
model.train(X_train, y_train, epochs=20, learning_rate=0.01)
results = model.evaluate(X_test, y_test, metrics=['classification', 'roc'])

Contributing

Thank you for your interest in contributing to the ncxlib library for Neural Network development. We are thrilled you are considering contributing to our project.

How to Contribute

  • Take a look at the list of immediate contributions needed listed under the issues
  • Look for areas around the repository with comments marked #TODO. If you find one, feel free to create an issue and get approval before starting the work.
  • Any suggestions or feedback - please create an issue.
  • Open a Pull Request with your issue and the team will review and approve/deny or provide comments on the PR.

License

This project is licensed under the MIT License

About

Neural Network Library

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •