Skip to content

mikgroup/simplicit_diffusion

Repository files navigation

simplicit_diffusion

Implicit neural representations for peristalsis data with a clean scaffold for diffusion priors.

Quick start

  1. Install dependencies:

    pip install -r requirements.txt
  2. Train with peristalsis data:

    python train.py --data_path "/home/shoumik/simulation/data/datasets/realistic/peristalsis_data.npz"
  3. Monitor training:

    tensorboard --logdir experiments/simplicit_diffusion/runs

Diffusion prior workflow

  1. Export peristalsis frames:

    python scripts/export_frames.py \
        --npz_path "/home/shoumik/simulation/data/datasets/realistic/peristalsis_data.npz" \
        --output_dir data/images/train
  2. Install improved-diffusion (once):

    pip install -e external/improved-diffusion
  3. Train diffusion model:

    python scripts/train_diffusion.py \
        --data_dir data/images/train \
        --image_size 256
  4. Use diffusion prior during training:

    python train.py \
        --data_path "/home/shoumik/simulation/data/datasets/realistic/peristalsis_data.npz" \
        --use_prior \
        --prior_checkpoint /path/to/model.pt \
        --prior_weight 0.01 \
        --prior_apply_frequency 10

Documentation

See the docs/ directory for architecture, data format, and training details.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages