Implicit neural representations for peristalsis data with a clean scaffold for diffusion priors.
-
Install dependencies:
pip install -r requirements.txt
-
Train with peristalsis data:
python train.py --data_path "/home/shoumik/simulation/data/datasets/realistic/peristalsis_data.npz" -
Monitor training:
tensorboard --logdir experiments/simplicit_diffusion/runs
-
Export peristalsis frames:
python scripts/export_frames.py \ --npz_path "/home/shoumik/simulation/data/datasets/realistic/peristalsis_data.npz" \ --output_dir data/images/train -
Install improved-diffusion (once):
pip install -e external/improved-diffusion
-
Train diffusion model:
python scripts/train_diffusion.py \ --data_dir data/images/train \ --image_size 256 -
Use diffusion prior during training:
python train.py \ --data_path "/home/shoumik/simulation/data/datasets/realistic/peristalsis_data.npz" \ --use_prior \ --prior_checkpoint /path/to/model.pt \ --prior_weight 0.01 \ --prior_apply_frequency 10
See the docs/ directory for architecture, data format, and training details.