Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 18 additions & 7 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,12 +37,17 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0
if not isinstance(X, np.ndarray):
raise ValueError("X must be a numpy array")
if X.ndim != 2:
raise ValueError("X must be a two-dimensional numpy array")

# TODO
flat_index = np.argmax(X)

return i, j
# Convert flat index to 2D coordinates
i, j = np.unravel_index(flat_index, X.shape)

return int(i), int(j)


def wallis_product(n_terms):
Expand All @@ -62,6 +67,12 @@ def wallis_product(n_terms):
pi : float
The approximation of order `n_terms` of pi using the Wallis product.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if not isinstance(n_terms, int) or n_terms < 0:
raise ValueError("n_terms must be a non-negative integer")
if n_terms == 0:
return 1.0

n = np.arange(1, n_terms + 1)
terms = (4 * n ** 2) / ((4 * n ** 2) - 1)
product = np.prod(terms)
return 2 * product
71 changes: 55 additions & 16 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,52 +23,91 @@
from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from sklearn.utils.validation import check_X_y
from sklearn.utils.validation import check_array
from sklearn.utils.validation import check_is_fitted
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.
"""Fit the OneNearestNeighbor classifier.

And describe parameters
Store the training data for use in prediction.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training data features.
y : ndarray of shape (n_samples,)
Training data labels.

Returns
-------
self : object
Returns self.
"""
X, y = check_X_y(X, y)
X, y = self._validate_data(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_ = X
self.y_ = y

return self

def predict(self, X):
"""Write docstring.
"""Predict class labels for samples in X.

For each sample, finds the nearest neighbor in the training data
and returns its label.

And describe parameters
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Test samples to predict.

Returns
-------
y_pred : ndarray of shape (n_samples,)
Predicted class labels for each test sample.
"""
check_is_fitted(self)
X = check_array(X)
X = self._validate_data(X, reset=False)

y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)

# XXX fix
for i, test_point in enumerate(X):
distances = np.linalg.norm(self.X_ - test_point, axis=1)
nearest_idx = np.argmin(distances)
y_pred[i] = self.y_[nearest_idx]

return y_pred

def score(self, X, y):
"""Write docstring.
"""Calculate accuracy score.

Computes the proportion of correctly classified samples.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Test samples.
y : ndarray of shape (n_samples,)
True labels for X.

And describe parameters
Returns
-------
score : float
Accuracy score (proportion of correct predictions).
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return np.mean(y_pred == y)