Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 31 additions & 7 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,12 +37,16 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0
if not isinstance(X, np.ndarray):
raise ValueError("X must be a numpy array.")

# TODO
if X.ndim != 2:
raise ValueError("X must be a 2D array.")

return i, j
flat_index = np.argmax(X)
i, j = np.unravel_index(flat_index, X.shape)

return int(i), int(j)


def wallis_product(n_terms):
Expand All @@ -61,7 +65,27 @@ def wallis_product(n_terms):
-------
pi : float
The approximation of order `n_terms` of pi using the Wallis product.

Raises
------
ValueError
If n_terms is negative or not an integer.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if not isinstance(n_terms, int):
raise ValueError("n_terms must be an integer.")

if n_terms < 0:
raise ValueError("n_terms must be non-negative.")

if n_terms == 0:
return 1.0

product = 1.0

for k in range(1, n_terms + 1):
numerator = 4.0 * k * k
denominator = numerator - 1.0
product *= numerator / denominator

pi_approx = 2.0 * product
return pi_approx
107 changes: 72 additions & 35 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,56 +19,93 @@
for the methods you code and for the class. The docstring will be checked using
`pydocstyle` that you can also call at the root of the repo.
"""
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from sklearn.utils.validation import check_X_y
from sklearn.utils.validation import check_array
from sklearn.utils.validation import check_is_fitted
from sklearn.utils.multiclass import check_classification_targets
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
from sklearn.utils.multiclass import unique_labels
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""One-nearest-neighbor classifier.

def __init__(self): # noqa: D107
pass
This classifier predicts, for each sample, the label of the closest
training sample, using the Euclidean distance.

Attributes
----------
classes_ : ndarray of shape (n_classes,)
Class labels known to the classifier.

X_ : ndarray of shape (n_samples, n_features)
Training data stored after fitting.

y_ : ndarray of shape (n_samples,)
Target values stored after fitting.

n_features_in_ : int
Number of features seen during fit.
"""

def fit(self, X, y):
"""Write docstring.
"""Fit the one-nearest-neighbor classifier.

And describe parameters
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.

y : array-like of shape (n_samples,)
Target values.

Returns
-------
self : OneNearestNeighbor
Fitted estimator.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]
X, y = check_X_y(X, y, accept_sparse=False)
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X, y)

# XXX fix
self._knn = knn
self.classes_ = unique_labels(y)
self.n_features_in_ = X.shape[1]
self.X_ = X
self.y_ = y
return self

def predict(self, X):
"""Write docstring.
"""Predict class labels for the provided data.

And describe parameters
"""
check_is_fitted(self)
X = check_array(X)
y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)
Parameters
----------
X : array-like of shape (n_samples, n_features)
Samples to classify.

# XXX fix
return y_pred
Returns
-------
y_pred : ndarray of shape (n_samples,)
Predicted class labels.
"""
check_is_fitted(self, ("_knn", "classes_", "n_features_in_"))
X = check_array(X, accept_sparse=False)
return self._knn.predict(X)

def score(self, X, y):
"""Write docstring.
"""Return the mean accuracy on the given test data and labels.

And describe parameters
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.

y : array-like of shape (n_samples,)
True labels for X.

Returns
-------
score : float
Mean accuracy of the predictions on the given data.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return accuracy_score(y, y_pred)