Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 13 additions & 4 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,10 +37,14 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0
if not isinstance(X, np.ndarray):
raise ValueError("Input is not a numpy array")

# TODO
if X.ndim != 2:
raise ValueError("Shape is not 2D")

max_index = np.argmax(X)
i, j = np.unravel_index(max_index, X.shape)

return i, j

Expand All @@ -64,4 +68,9 @@ def wallis_product(n_terms):
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if n_terms == 0:
return 1.0
n = np.arange(1, n_terms + 1)
terms = (4 * n * n) / (4 * n * n - 1)

return 2 * np.prod(terms)
56 changes: 44 additions & 12 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,28 +29,47 @@


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.
"""Fit the OneNearestNeighbor classifier.

And describe parameters
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training data.

y : ndarray of shape (n_samples,)
Target labels.

Returns
-------
self : object
Fitted estimator.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_ = X
self.y_ = y
return self

def predict(self, X):
"""Write docstring.
"""Predict class labels for samples in X.

And describe parameters
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Input data.

Returns
-------
y_pred : ndarray of shape (n_samples,)
Predicted labels.
"""
check_is_fitted(self)
X = check_array(X)
Expand All @@ -59,16 +78,29 @@ def predict(self, X):
dtype=self.classes_.dtype
)

# XXX fix
for i, x in enumerate(X):
distances = np.linalg.norm(self.X_ - x, axis=1)
nearest_idx = np.argmin(distances)
y_pred[i] = self.y_[nearest_idx]
return y_pred

def score(self, X, y):
"""Write docstring.
"""Return the accuracy score on the given test data.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Test samples.

y : ndarray of shape (n_samples,)
True labels.

And describe parameters
Returns
-------
accuracy : float
Mean accuracy of predictions.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return np.mean(y_pred == y)