Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 17 additions & 2 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,8 +40,15 @@ def max_index(X):
i = 0
j = 0

# TODO
# Raise ValueError
if not isinstance(X, np.ndarray) or X.ndim != 2:
raise ValueError("Input must be a 2D numpy array")

# Find max
max_val_index = np.argmax(X) # returns index of X flattened

# Find index
i, j = np.unravel_index(max_val_index, X.shape)
return i, j


Expand All @@ -64,4 +71,12 @@ def wallis_product(n_terms):
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.

if n_terms == 0:
return 1
else:
cumprod = 1
for n in range(1, n_terms + 1):
prod = (4 * (n ** 2)) / ((4 * (n ** 2)) - 1)
cumprod *= prod
return cumprod * 2
76 changes: 60 additions & 16 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,53 +22,97 @@
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from sklearn.utils.validation import check_X_y
from sklearn.utils.validation import check_array
from sklearn.utils.validation import check_is_fitted
from sklearn.utils.multiclass import check_classification_targets
from sklearn.utils.validation import check_X_y
from sklearn.utils.validation import check_array


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.
"""Fit the model based on X and y.

Parameters
----------
X: array (n_samples, n_features). Training data.

y: array (n_samples). Target data.

Returns
-------
self: object

And describe parameters
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_ = X
self.y_ = y
return self

def predict(self, X):
"""Write docstring.
"""Predict the labels for each x based on Euclidean distance.

Parameters
----------
X: array of test samples

And describe parameters
Returns
-------
y_pred: array with shape (n_samples, ) of predicted labels
"""
check_is_fitted(self)
X = check_array(X)

# Required by sklearn's check_estimator
if X.shape[1] != self.n_features_in_:
raise ValueError(
f"X has {X.shape[1]} features, but OneNearestNeighbor "
f"was fitted with {self.n_features_in_} features."
)

y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)

# XXX fix
# Compute distances
for i, x_test in enumerate(X):
distances = np.linalg.norm(self.X_ - x_test, axis=1)
idx = np.argmin(distances)
y_pred[i] = self.y_[idx]

return y_pred

def score(self, X, y):
"""Write docstring.
"""Return the accuracy of the classifier.

Parameters
----------
X: array (n_samples, n_features). Training data.

y: array (n_samples). Target data.

And describe parameters
y_pred: array with shape (n_samples, ) of predicted labels

Returns
-------
accuracy: float, fraction of correct predictions.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
# Same feature check for consistency
if X.shape[1] != self.n_features_in_:
raise ValueError(
f"X has {X.shape[1]} features, but OneNearestNeighbor "
f"was fitted with {self.n_features_in_} features."
)

y_pred = self.predict(X)
return np.mean(y_pred == y)