Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 12 additions & 7 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,11 +37,11 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0

# TODO
if not isinstance(X, np.ndarray) or X.ndim != 2:
raise ValueError("X must be a 2D numpy array")

flat_index = np.argmax(X)
i, j = np.unravel_index(flat_index, X.shape)
return i, j


Expand All @@ -62,6 +62,11 @@ def wallis_product(n_terms):
pi : float
The approximation of order `n_terms` of pi using the Wallis product.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if not isinstance(n_terms, int) or n_terms < 0:
raise ValueError("n_terms must be a non-negative integer")
if n_terms == 0:
return 1.
pi = 2.
for i in range(1, n_terms + 1):
pi *= (4 * i**2) / (4 * i**2 - 1)
return pi
70 changes: 52 additions & 18 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,47 +28,81 @@
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.

And describe parameters
"""Fit the OneNearestNeighbor classifier.

Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target values.

Returns
-------
self : object
Returns the instance itself.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_train_ = X
self.y_train_ = y
return self

def predict(self, X):
"""Write docstring.
"""Predict the class labels for the provided data.

Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.

And describe parameters
Returns
-------
y_pred : ndarray of shape (n_samples,)
Class labels for each data sample.
"""
check_is_fitted(self)
X = check_array(X)
X = check_array(X, ensure_2d=True)
if X.shape[1] != self.n_features_in_:
raise ValueError(
"X has {} features, but {} is expecting {} features as input"
.format(
X.shape[1], self.__class__.__name__, self.n_features_in_)
)
y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)

# XXX fix
for i, x in enumerate(X):
distances = np.sqrt(np.sum((self.X_train_ - x)**2, axis=1))
nearest_idx = np.argmin(distances)
y_pred[i] = self.y_train_[nearest_idx]
return y_pred

def score(self, X, y):
"""Write docstring.

And describe parameters
"""Return the mean accuracy on the given test data and labels.

Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.
y : array-like of shape (n_samples,)
True labels for X.

Returns
-------
score : float
Mean accuracy of self.predict(X) with respect to y.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return np.mean(y_pred == y)