Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 19 additions & 7 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,12 +37,19 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0
if not isinstance(X, np.ndarray):
raise ValueError('The input is not an array.')

# TODO
if X.ndim != 2:
raise ValueError('The input is not 2D array')
overall_max = np.max(X)

return i, j
for i in range(np.shape(X)[0]):
for j in range(np.shape(X)[1]):
if X[i][j] == overall_max:
return i, j

return 0, 0


def wallis_product(n_terms):
Expand All @@ -62,6 +69,11 @@ def wallis_product(n_terms):
pi : float
The approximation of order `n_terms` of pi using the Wallis product.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if n_terms == 0:
return 1
else:
prod = 1
for i in range(1, n_terms + 1):
prod *= (4 * i ** 2) / (4 * i**2 - 1)

return prod * 2
77 changes: 63 additions & 14 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,47 +28,96 @@
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.

And describe parameters
"""
Fit the classifier with training data.

Parameters:
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target labels.

Returns
-------
self : object
Returns the instance itself.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_train_ = X
self.y_train_ = y

return self

def predict(self, X):
"""Write docstring.
"""
Predict labels for new samples.

For each input point, finds the closest training sample (using
Euclidean distance) and returns its label.

Parameters
----------
X : array-like of shape (n_samples, n_features)
Test data.

And describe parameters
Returns
-------
y_pred : ndarray of shape (n_samples,)
Predicted class labels for each input sample.
"""
check_is_fitted(self)
X = check_array(X)

if X.shape[1] != self.n_features_in_:
raise ValueError(
f"X has {X.shape[1]} features, but OneNearestNeighbor "
f"is expecting {self.n_features_in_} features as input."
)

y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)

# XXX fix
for i, x_test in enumerate(X):
distances = np.sqrt(np.sum((self.X_train_ - x_test) ** 2, axis=1))
nearest_idx = np.argmin(distances)
y_pred[i] = self.y_train_[nearest_idx]

return y_pred

def score(self, X, y):
"""Write docstring.

And describe parameters
"""
Compute the accuracy of the classifier.

Accuracy is the fraction of correctly predicted samples
compared to the true labels.

Parameters
----------
X : array-like of shape (n_samples, n_features)
Test data.
y : array-like of shape (n_samples,)
True labels for the test data.

Returns
-------
score : float
Mean accuracy of predictions.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return np.mean(y_pred == y)