Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 20 additions & 1 deletion numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,15 @@ def max_index(X):

# TODO

if not isinstance(X, np.ndarray):
raise ValueError("Input is not a numpy array") # Check for numpy array

if X.ndim != 2:
raise ValueError("Input array is not 2D") # Check for 2D shape

# Find indices of maximum value
i, j = np.unravel_index(np.argmax(X), X.shape)

return i, j


Expand All @@ -64,4 +73,14 @@ def wallis_product(n_terms):
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.

if n_terms == 0:
# Wallis product with 0 terms is defined as 1
return 1.0

n = np.arange(1, n_terms + 1) # Create an array from 1 to n_terms
terms = (2 * n / (2 * n - 1)) * (2 * n / (2 * n + 1))
product = np.prod(terms) # Compute the product of all terms

# Return the approximation of pi
return 2.0 * product
58 changes: 48 additions & 10 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,28 +29,49 @@


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.

And describe parameters
"""Fit the OneNearestNeighbor classifier.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training data.
y : ndarray of shape (n_samples,)
Target labels corresponding to X.

Returns
-------
self : object
Fitted estimator.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_ = X
self.y_ = y

return self

def predict(self, X):
"""Write docstring.
"""Predict class labels for the given samples.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Input data to predict.

And describe parameters
Returns
-------
y_pred : ndarray of shape (n_samples,)
Predicted class labels for each sample in X.
"""
check_is_fitted(self)
X = check_array(X)
Expand All @@ -60,15 +81,32 @@ def predict(self, X):
)

# XXX fix
# euclidean distances between each point in X and each point in self.X_
distances = np.linalg.norm(
self.X_[np.newaxis, :, :] - X[:, np.newaxis, :],
axis=2,
)
nearest_idx = np.argmin(distances, axis=1)
y_pred = self.y_[nearest_idx]
return y_pred

def score(self, X, y):
"""Write docstring.

And describe parameters
"""Compute the accuracy of the classifier.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Test samples.
y : ndarray of shape (n_samples,)
True labels for X.

Returns
-------
score : float
Mean accuracy of the classifier on the provided data.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return np.mean(y_pred == y)