Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 16 additions & 5 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,10 +37,14 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
if not isinstance(X, np.ndarray):
raise ValueError("Input is not a numpy array")
if X.ndim != 2:
raise ValueError("X must be a 2D array")
i = 0
j = 0

# TODO
index = np.argmax(X)
i, j = np.unravel_index(index, X.shape)

return i, j

Expand All @@ -62,6 +66,13 @@ def wallis_product(n_terms):
pi : float
The approximation of order `n_terms` of pi using the Wallis product.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
product = 1

for i in range(1, n_terms + 1):
numerator = 4 * (i ** 2)
denominator = numerator - 1
product *= numerator / denominator

if n_terms == 0:
return 1.0
return 2 * product
43 changes: 27 additions & 16 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,45 +22,57 @@
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from sklearn.utils.validation import check_X_y
from sklearn.utils.validation import check_array
from sklearn.utils.validation import check_X_y, check_array
from sklearn.utils.validation import check_is_fitted
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.
"""
Fits data.

And describe parameters
Parameters:
X: ndarray shape (n_samples, n_features)
y: ndarray shape (n_samples,)

Returns:
estimator
"""
X, y = check_X_y(X, y)
check_classification_targets(y)

self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_ = X
self.y_ = y
return self

def predict(self, X):
"""Write docstring.
"""
Make predictions.

And describe parameters
Parameters:
X: ndarray of shape (n_samples, n_features)

Returns:
predicted labels
"""
check_is_fitted(self)
X = check_array(X)
y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
distances = np.linalg.norm(
self.X_[None, :, :] - X[:, None, :], axis=2
)

# XXX fix
return y_pred
nearest_neighbour = np.argmin(distances, axis=1)

return self.y_[nearest_neighbour]

def score(self, X, y):
"""Write docstring.
Expand All @@ -70,5 +82,4 @@ def score(self, X, y):
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return np.mean(y_pred == y)