Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 26 additions & 1 deletion numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,17 @@ def max_index(X):
j = 0

# TODO
if not isinstance(X, np.ndarray):
raise ValueError("Input is not a numpy array")

if X.ndim != 2:
raise ValueError("Input array is not 2D")

# np.argmax returns the index of the maximum value in the flattened array
# np.unravel_index converts it back to 2D indices
max_idx = np.unravel_index(np.argmax(X, axis=None), X.shape)

i, j = max_idx

return i, j

Expand All @@ -64,4 +75,18 @@ def wallis_product(n_terms):
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.

if n_terms < 0 or not isinstance(n_terms, int):
raise ValueError("n_terms: non-negative integer")

if n_terms == 0:
return 1

product = 1

for n in range(1, n_terms + 1):
numerator = 4 * n ** 2
denominator = numerator - 1
product *= numerator / denominator

return 2 * product
60 changes: 50 additions & 10 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,28 +29,49 @@


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.

And describe parameters
"""Fit the OneNearestNeighbor model.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
The training input samples.
y : ndarray of shape (n_samples,)
The target values (class labels).

Returns
-------
self : object
Fitted estimator.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_ = X
self.y_ = y

return self

def predict(self, X):
"""Write docstring.
"""Predict using the OneNearestNeighbor model.

And describe parameters
Parameters
----------
X : ndarray of shape (n_samples, n_features)
The input samples to predict.

Returns
-------
y_pred : ndarray of shape (n_samples,)
The predicted class labels.
"""
check_is_fitted(self)
X = check_array(X)
Expand All @@ -60,15 +81,34 @@ def predict(self, X):
)

# XXX fix
for i in range(X.shape[0]):
# Compute distances from X[i] to all training samples
distances = np.linalg.norm(self.X_ - X[i, :], axis=1)

nearest_index = np.argmin(distances)
y_pred[i] = self.y_[nearest_index]

return y_pred

def score(self, X, y):
"""Write docstring.

And describe parameters
"""Compute the accuracy of the OneNearestNeighbor model.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
The input samples to predict.
y : ndarray of shape (n_samples,)
The true class labels.

Returns
-------
score : float
The accuracy of the model.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
accuracy = (y_pred == y).sum() / len(y)

return accuracy