Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 15 additions & 7 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,12 +37,14 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0
if not isinstance(X, np.ndarray):
raise ValueError("X must be a numpy array")

# TODO
if X.ndim != 2:
raise ValueError("X must be a 2D array")

return i, j
max_pos = np.unravel_index(np.argmax(X), X.shape)
return max_pos


def wallis_product(n_terms):
Expand All @@ -62,6 +64,12 @@ def wallis_product(n_terms):
pi : float
The approximation of order `n_terms` of pi using the Wallis product.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
pi = 1.0

if n_terms == 0:
return 1.0

for n in range(1, n_terms + 1):
pi *= (2 * n / (2 * n - 1)) * (2 * n / (2 * n + 1))

return 2 * pi
97 changes: 74 additions & 23 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,49 +26,100 @@
from sklearn.utils.validation import check_array
from sklearn.utils.validation import check_is_fitted
from sklearn.utils.multiclass import check_classification_targets
try:
from sklearn.utils.validation import validate_data
except ImportError:
validate_data = None


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
def __init__(self):
"""Initialize the OneNearestNeighbor classifier."""
pass

def fit(self, X, y):
"""Write docstring.
"""Fit the 1-nearest-neighbor classifier.

And describe parameters
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.

y : array-like of shape (n_samples,)
Target labels.

Returns
-------
self : OneNearestNeighbor
Fitted estimator.
"""
X, y = check_X_y(X, y)
if validate_data is not None:
X, y = validate_data(self, X, y=y)
else:
X, y = check_X_y(X, y)
self.n_features_in_ = X.shape[1]

check_classification_targets(y)

self.X_ = X
self.y_ = y

self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
return self

def predict(self, X):
"""Write docstring.
"""Predict class labels for the samples in X.

And describe parameters
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.

Returns
-------
y_pred : ndarray of shape (n_samples,)
Predicted class labels.
"""
check_is_fitted(self)
X = check_array(X)
y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)

# XXX fix
check_is_fitted(self, ["X_", "y_", "classes_"])

if validate_data is not None:
X = validate_data(self, X, reset=False)
else:
X = check_array(X)
if X.shape[1] != self.n_features_in_:
raise ValueError(
f"X has {X.shape[1]} features, "
f"but expected {self.n_features_in_}."
)

diff = X[:, np.newaxis, :] - self.X_[np.newaxis, :, :]
distances = np.linalg.norm(diff, axis=2) # (n_test, n_train)

nn_index = np.argmin(distances, axis=1)

y_pred = self.y_[nn_index]

return y_pred

def score(self, X, y):
"""Write docstring.
"""Return the mean accuracy on the given test data and labels.

And describe parameters
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.

y : array-like of shape (n_samples,)
True labels.

Returns
-------
score : float
Mean accuracy of predictions.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return np.mean(y_pred == y)