Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 17 additions & 1 deletion numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,17 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
if not isinstance(X, np.ndarray):
raise ValueError("Not an array")
if X.ndim != 2:
raise ValueError("Wrong dimension (should be 2)")

i = 0
j = 0

max_index = np.argmax(X)
i, j = np.unravel_index(max_index, X.shape)

# TODO

return i, j
Expand All @@ -64,4 +72,12 @@ def wallis_product(n_terms):
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.

if n_terms == 0:
return 1

n = np.arange(1, n_terms+1)
wallis_terms = (4*n**2)/(4*n**2 - 1)
product = np.prod(wallis_terms)

return 2*product
75 changes: 62 additions & 13 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,47 +28,96 @@
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.

And describe parameters
"""Fit the OneNearestNeighbor classifier.

This method stores the training data so that predictions can be
made by finding, for each test sample, the closest training sample
in Euclidean distance.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training data. Each row corresponds to one sample and each
column corresponds to one feature.

y : ndarray of shape (n_samples,)
Target labels for the training samples. Must be a classification
target (e.g. integers or strings).

Returns
-------
self : OneNearestNeighbor
The fitted classifier.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_ = X
self.y_ = y

return self

def predict(self, X):
"""Write docstring.
"""Predict class labels for samples in X.

And describe parameters
Parameters
----------
X : ndarray of shape (n_test_samples, n_features)
Test data.

Returns
-------
y_pred : ndarray of shape (n_test_samples,)
Predicted labels.
"""
check_is_fitted(self)
X = check_array(X)

if X.shape[1] != self.n_features_in_:
raise ValueError(
f"X has {X.shape[1]} features, but "
f"{self.__class__.__name__} is expecting "
f"{self.n_features_in_} features as input"
)

y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)

# XXX fix
euc_dist = np.sqrt(((X[None, :, :] - self.X_[:, None, :])**2)
.sum(axis=2))
nearest_point = np.argmin(euc_dist, axis=0)
y_pred = self.y_[nearest_point]

return y_pred

def score(self, X, y):
"""Write docstring.
"""Return accuracy on test samples after running predict().

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Test samples.

y : ndarray of shape (n_samples,)
True labels.

And describe parameters
Returns
-------
accuracy : float
Fraction of correctly classified samples.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return np.mean(y_pred == y)