Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 16 additions & 2 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,12 @@ def max_index(X):
i = 0
j = 0

# TODO
if not isinstance(X, np.ndarray):
raise ValueError("X must be a numpy ndarray.")
if X.ndim != 2:
raise ValueError("X must be a 2D array.")
flat_index = np.argmax(X)
i, j = np.unravel_index(flat_index, X.shape)

return i, j

Expand All @@ -64,4 +69,13 @@ def wallis_product(n_terms):
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.

if n_terms < 0:
raise ValueError("The number of terms must be positive")
if n_terms == 0:
return 1.0
n = np.arange(1, n_terms+1, dtype=float)
terms = 4*n**2/(4*n**2-1)
product = np.prod(terms)
pi_approx = 2*product
return pi_approx
94 changes: 72 additions & 22 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,55 +20,105 @@
`pydocstyle` that you can also call at the root of the repo.
"""
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from sklearn.utils.validation import check_X_y
from sklearn.utils.validation import check_array
from sklearn.utils.validation import check_is_fitted
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.utils.validation import check_X_y, check_is_fitted, check_array
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""One-nearest-neighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.

And describe parameters
"""Fit the OneNearestNeighbor classifier.

This method stores the training data X and y inside the estimator
so that predictions can be made based on the nearest neighbor rule.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training data.
y : ndarray of shape (n_samples,)
Target labels corresponding to X.

Returns
-------
self : object
Fitted estimator.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_ = X
self.y_ = y

return self

def predict(self, X):
"""Write docstring.
"""Predict class labels for the given samples.

For each sample in X, this method finds the closest training sample
stored during ``fit`` using the Euclidean distance, and returns its
corresponding label.

And describe parameters
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input samples for which to predict class labels.

Returns
-------
y_pred : ndarray of shape (n_samples,)
Predicted class labels for each sample in X.
"""
check_is_fitted(self)
X = check_array(X)

if X.shape[1] != self.n_features_in_:
raise ValueError(
f"X has {X.shape[1]} features, but OneNearestNeighbor "
f"is expecting {self.n_features_in_} features as input."
)

y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
shape=len(X),
fill_value=self.classes_[0],
dtype=self.classes_.dtype,
)

# XXX fix
for idx, x_i in enumerate(X):
diff = self.X_ - x_i
distances = np.sqrt(np.sum(diff**2, axis=1))
nearest = np.argmin(distances)
y_pred[idx] = self.y_[nearest]

return y_pred

def score(self, X, y):
"""Write docstring.

And describe parameters
"""Compute the accuracy of the classifier.

This method compares the predicted labels for X with the true labels y
and returns the proportion of correctly classified samples.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Test samples.
y : ndarray of shape (n_samples,)
True labels for X.

Returns
-------
accuracy : float
Mean accuracy of the classifier on the given test data.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
correct = y_pred == y
accuracy = np.mean(correct)
return accuracy