Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 20 additions & 14 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,39 +29,45 @@ def max_index(X):
Returns
-------
(i, j) : tuple(int)
The row and columnd index of the maximum.
The row and column index of the maximum.

Raises
------
ValueError
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0
if not isinstance(X, np.ndarray): # check if X is a numpy array
raise ValueError("Input must be a numpy array")
if X.ndim != 2: # check if X is 2D
raise ValueError("Input must be a 2D array")

# TODO
flat_index = np.argmax(X) # index of max value
i, j = np.unravel_index(flat_index, X.shape)

return i, j


def wallis_product(n_terms):
"""Implement the Wallis product to compute an approximation of pi.

See:
https://en.wikipedia.org/wiki/Wallis_product
"""Compute an approximation of pi using the Wallis product.

Parameters
----------
n_terms : int
Number of steps in the Wallis product. Note that `n_terms=0` will
consider the product to be `1`.
Number of terms in the product. If `n_terms=0`, the result is 1.

Returns
-------
pi : float
The approximation of order `n_terms` of pi using the Wallis product.
Approximation of pi of order `n_terms`.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if n_terms == 0:
return 1.0

product = 1.0
for k in range(1, n_terms + 1):
numerator = 4 * k * k
term = numerator / (numerator - 1)
product *= term

return 2 * product
87 changes: 70 additions & 17 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,47 +28,100 @@
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier.

This classifier predicts the label of each
sample based on the label of the closest
training sample using Euclidean distance.
"""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.
"""Fit the OneNearestNeighbor classifier.

Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.

y : array-like of shape (n_samples,)
Target labels.

And describe parameters
Returns
-------
self : object
Fitted estimator.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)

self.X_ = X
self.y_ = y
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
return self

def predict(self, X):
"""Write docstring.
"""Predict class labels for the samples in X.

Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.

And describe parameters
Returns
-------
y_pred : ndarray of shape (n_samples,)
Predicted class labels.
"""
check_is_fitted(self)
X = check_array(X)
y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)

# XXX fix
# manual sklearn-required feature consistency check
if X.shape[1] != self.n_features_in_:
raise ValueError(
f"X has {X.shape[1]} features, but "
f"{self.__class__.__name__} is expecting "
f"{self.n_features_in_} features as input"
)
y_pred = np.empty(X.shape[0], dtype=self.y_.dtype)

for i, x in enumerate(X):
distances = np.linalg.norm(self.X_ - x, axis=1)
nearest_idx = np.argmin(distances)
y_pred[i] = self.y_[nearest_idx]

return y_pred

def score(self, X, y):
"""Write docstring.
"""Compute the accuracy of the classifier.

Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.

y : array-like of shape (n_samples,)
True labels.

And describe parameters
Returns
-------
score : float
Mean accuracy of the classifier.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
# same feature count check
if X.shape[1] != self.n_features_in_:
raise ValueError(
f"X has {X.shape[1]} features, but "
f"{self.__class__.__name__} is expecting "
f"{self.n_features_in_} features as input"
)

y_pred = self.predict(X)
return np.mean(y_pred == y)