Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 20 additions & 6 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,10 +37,16 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0
if not isinstance(X, np.ndarray):
raise ValueError("Input must be a numpy array.")

# TODO
if X.ndim != 2:
raise ValueError("Input array must be 2D.")

# find the position
flat_idx = np.argmax(X)
# row and col
i, j = np.unravel_index(flat_idx, X.shape)

return i, j

Expand All @@ -62,6 +68,14 @@ def wallis_product(n_terms):
pi : float
The approximation of order `n_terms` of pi using the Wallis product.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if n_terms < 0:
raise ValueError("n_terms must be non-negative.")

if n_terms == 0:
return 1.0

n = np.arange(1, n_terms + 1, dtype=float)
terms = (4 * n ** 2) / (4 * n ** 2 - 1)
product = np.prod(terms)

return 2.0 * product
78 changes: 60 additions & 18 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,47 +28,89 @@
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier.

This classifier predicts the class of the closest training sample
in Euclidean distance.
"""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.
"""Fit the OneNearestNeighbor classifier.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training input samples.

y : ndarray of shape (n_samples,)
Target labels for classification.

And describe parameters
Returns
-------
self : object
Returns the fitted classifier.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)

self.X_ = X
self.y_ = y
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
return self

def predict(self, X):
"""Write docstring.
"""Predict the class labels for samples in X.

Parameters
----------
X : ndarray of shape (n_test_samples, n_features)
Samples to classify.

And describe parameters
Returns
-------
y_pred : ndarray of shape (n_test_samples,)
Predicted class labels.
"""
check_is_fitted(self)
X = check_array(X)
y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)

# XXX fix
return y_pred
# check features
if X.shape[1] != self.n_features_in_:
raise ValueError(
"X has {} features, but OneNearestNeighbor is expecting {} "
"features as input".format(X.shape[1], self.n_features_in_)
)

# compute distances
distances = np.linalg.norm(X[:, None] - self.X_[None, :], axis=2)

# nearest indices
nearest_idx = np.argmin(distances, axis=1)

return self.y_[nearest_idx]

def score(self, X, y):
"""Write docstring.
"""Return the accuracy of prediction on the given data.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Test samples.

And describe parameters
y : ndarray of shape (n_samples,)
True labels.

Returns
-------
score : float
Accuracy of the classifier.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return np.mean(y_pred == y)