Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 18 additions & 7 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
* Use automated tools to validate the code (`pytest` and `flake8`)
* Submit a Pull-Request on github to practice `git`.

The two functions below are skeleton functions. The docstrings explain what
The two functions below are skeleton functions. The docstrings explain wha
are the inputs, the outputs and the expected error. Fill the function to
complete the assignment. The code should be able to pass the test that we
wrote. To run the tests, use `pytest test_numpy_questions.py` at the root of
Expand Down Expand Up @@ -39,8 +39,10 @@ def max_index(X):
"""
i = 0
j = 0

# TODO
if not isinstance(X, np.ndarray) or X.ndim != 2:
raise ValueError("X must be a 2D numpy.ndarray")
lin_idx = np.argmax(X)
i, j = np.unravel_index(lin_idx, X.shape)

return i, j

Expand All @@ -49,19 +51,28 @@ def wallis_product(n_terms):
"""Implement the Wallis product to compute an approximation of pi.

See:
https://en.wikipedia.org/wiki/Wallis_product
https://en.wikipedia.org/wiki/Wallis_produc

Parameters
----------
n_terms : int
n_terms : in
Number of steps in the Wallis product. Note that `n_terms=0` will
consider the product to be `1`.

Returns
-------
pi : float
pi : floa
The approximation of order `n_terms` of pi using the Wallis product.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.

if not isinstance(n_terms, int) or n_terms < 0:
raise ValueError("n_terms must be a non-negative integer")

if n_terms == 0:
return 1.0

k = np.arange(1, n_terms + 1, dtype=float)
terms = (4 * k * k) / (4 * k * k - 1)
return 2.0 * float(np.prod(terms, dtype=float))
114 changes: 83 additions & 31 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,55 +20,107 @@
`pydocstyle` that you can also call at the root of the repo.
"""
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from sklearn.utils.validation import check_X_y
from sklearn.utils.validation import check_array
from sklearn.utils.validation import check_is_fitted
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.utils.validation import check_is_fitted, check_X_y, check_array
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier.

A simple 1-nearest-neighbor classifier using Euclidean distance.
"""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.
# ----------------- compatibility helpers -----------------
def _fit_validate_compat(self, X, y):
"""Validate X,y and set n_features_in_ (new/old sklearn)."""
try:
# new sklearn exposes _validate_data on estimators
X, y = self._validate_data(X, y)
except AttributeError:
# old sklearn fallback
X, y = check_X_y(X, y)
self.n_features_in_ = X.shape[1]
return X, y

def _predict_validate_compat(self, X):
"""Validate X at predict time; check n_features_in_ if needed."""
try:
X = self._validate_data(X, reset=False)
except AttributeError:
X = check_array(X)
nfi = getattr(self, "n_features_in_", None)
if nfi is not None and X.shape[1] != nfi:
msg = (
f"X has {X.shape[1]} features, but "
f"{self.__class__.__name__} is expecting "
f"{nfi} features as input"
)
raise ValueError(msg)

return X
# ---------------------------------------------------------

And describe parameters
def fit(self, X, y):
"""Fit the classifier.

Parameters
----------
X : array-like of shape (n_samples, n_features)
Training samples.
y : array-like of shape (n_samples,)
Target labels.

Returns
-------
self : OneNearestNeighbor
Fitted estimator.
"""
X, y = check_X_y(X, y)
X, y = self._fit_validate_compat(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_ = X
self.y_ = y
return self

def predict(self, X):
"""Write docstring.
"""Predict class labels for samples in X.

And describe parameters
Parameters
----------
X : array-like of shape (n_samples, n_features)

Returns
-------
y_pred : ndarray of shape (n_samples,)
"""
check_is_fitted(self)
X = check_array(X)
y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)
check_is_fitted(self, attributes=["X_", "y_"])
X = self._predict_validate_compat(X)

# XXX fix
return y_pred
# squared distances between X (n,d) and self.X_ (m,d)
diff = X[:, None, :] - self.X_[None, :, :]
dist2 = (diff ** 2).sum(axis=2)
nn_idx = np.argmin(dist2, axis=1)
return self.y_[nn_idx]

def score(self, X, y):
"""Write docstring.
"""Return the mean accuracy on the given test data and labels."""
try:
X, y = self._validate_data(X, y, reset=False)
except AttributeError:
X_chk, y_chk = check_X_y(X, y)
nfi = getattr(self, "n_features_in_", None)
if nfi is not None and X_chk.shape[1] != nfi:
msg = (
f"X has {X_chk.shape[1]} features, but "
f"{self.__class__.__name__} is expecting "
f"{nfi} features as input"
)
raise ValueError(msg)
X, y = X_chk, y_chk

And describe parameters
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return float(np.mean(y_pred == y))