Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 31 additions & 5 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
This will be enforced with `flake8`. You can check that there is no flake8
errors by calling `flake8` at the root of the repo.
"""

import numpy as np


Expand All @@ -37,10 +38,21 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
if not isinstance(X, np.ndarray):
raise ValueError("X must be a 2D array")
if X.ndim != 2:
raise ValueError("X must be a 2D array")

n_rows, n_cols = X.shape
i = 0
j = 0

# TODO
max_val = X[0, 0]
for row in range(n_rows):
for col in range(n_cols):
if X[row, col] > max_val:
max_val = X[row, col]
i = row
j = col

return i, j

Expand All @@ -62,6 +74,20 @@ def wallis_product(n_terms):
pi : float
The approximation of order `n_terms` of pi using the Wallis product.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if not isinstance(n_terms, (int, np.integer)):
raise ValueError("n_terms must be an integer")
if n_terms < 0:
raise ValueError("n_terms must be non-negative")
if n_terms == 0:
return 1.0

product = 1.0

# Wallis product

for n in range(1, n_terms + 1):
numerator = 4.0 * n * n
denominator = numerator - 1
product *= numerator / denominator # this approximates pi/2

return 2.0 * product
65 changes: 50 additions & 15 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
for the methods you code and for the class. The docstring will be checked using
`pydocstyle` that you can also call at the root of the repo.
"""

import numpy as np
from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
Expand All @@ -29,46 +30,80 @@


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.

And describe parameters
"""Fit the 1-NN classifier.

Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data
y: array-like of shape (n_samples,)
Target labels.

Returns
----------
self : OneNearestNeighbor
Fitted classifier.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
# Store training data
self.X_ = X
self.y_ = y
return self

def predict(self, X):
"""Write docstring.
"""Predict class labels for samples in X.

Parameters
----------
X : array-like of shape (n_samples, n_features)
Input samples.

And describe parameters
Returns
----------
y_pred : ndarray of shape (n_samples,)
Predicted class labels.
"""
check_is_fitted(self)
X = check_array(X)
y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
shape=len(X), fill_value=self.classes_[0], dtype=self.classes_.dtype
)

# XXX fix
# compute distances to all training samples
diff = X[:, np.newaxis, :] - self.X_[np.newaxis, :, :]
distances = np.linalg.norm(diff, axis=2)
nearest_idx = np.argmin(distances, axis=1)

# fill y_pred with nearest-neighbor labels
y_pred[:] = self.y_[nearest_idx]
return y_pred

def score(self, X, y):
"""Write docstring.

And describe parameters
"""Compute mean accuracy of the classifier.

Parameters
----------
X: array-like of shape (n_samples, n_features)
Test samples.
y : array-like of shape (n_samples, )
True labels for X

Returns
----------
score : float
Mean accuracy of predictions on X compared to true labels y
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return np.mean(y_pred == y)