Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 15 additions & 5 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,11 +37,13 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0

# TODO

if not isinstance(X, np.ndarray):
raise ValueError("Input must be a numpy array")
if X.ndim != 2:
raise ValueError("Input array must be 2D")
flat_index = np.argmax(X, axis=None)
i, j = np.unravel_index(flat_index, X.shape)
return i, j


Expand All @@ -64,4 +66,12 @@ def wallis_product(n_terms):
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if n_terms == 0:
return 1.0
product = 1.0
for n in range(1, n_terms + 1):
term1 = (2.0 * n) / (2.0 * n - 1.0)
term2 = (2.0 * n) / (2.0 * n + 1.0)
product = product * term1 * term2
pi_approx = 2.0 * product
return pi_approx
24 changes: 16 additions & 8 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,8 +28,8 @@
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass
Expand All @@ -43,8 +43,8 @@ def fit(self, X, y):
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_ = X
self.y_ = y
return self

def predict(self, X):
Expand All @@ -53,12 +53,20 @@ def predict(self, X):
And describe parameters
"""
check_is_fitted(self)
X = check_array(X)
X = check_array(X, ensure_2d=True)
if X.shape[1] != self.n_features_in_:
raise ValueError(
f'X has {X.shape[1]} features, but {self.__class__.__name__} '
f'is expecting {self.n_features_in_} features as input.'
)
y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)

for i, x_test in enumerate(X):
distances = np.sqrt(np.sum((self.X_ - x_test) ** 2, axis=1))
nearest_idx = np.argmin(distances)
y_pred[i] = self.y_[nearest_idx]
# XXX fix
return y_pred

Expand All @@ -69,6 +77,6 @@ def score(self, X, y):
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
accuracy = np.mean(y_pred == y)
return accuracy