Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 18 additions & 37 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,49 +19,30 @@


def max_index(X):
"""Return the index of the maximum in a numpy array.
"""Return the index of the maximum in a numpy array."""
# Check input type
if not isinstance(X, np.ndarray):
raise ValueError("Input must be a numpy array.")

Parameters
----------
X : ndarray of shape (n_samples, n_features)
The input array.
# Check shape
if X.ndim != 2:
raise ValueError("Input must be a 2D array.")

Returns
-------
(i, j) : tuple(int)
The row and columnd index of the maximum.

Raises
------
ValueError
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0

# TODO
# Find the index of maximum
flat_index = np.argmax(X)
i, j = np.unravel_index(flat_index, X.shape)

return i, j


def wallis_product(n_terms):
"""Implement the Wallis product to compute an approximation of pi.

See:
https://en.wikipedia.org/wiki/Wallis_product
"""Compute an approximation of pi using the Wallis product."""
if n_terms == 0:
return 1.0 # by definition

Parameters
----------
n_terms : int
Number of steps in the Wallis product. Note that `n_terms=0` will
consider the product to be `1`.
product = 1.0
for n in range(1, n_terms + 1):
term = (4 * n * n) / (4 * n * n - 1)
product *= term

Returns
-------
pi : float
The approximation of order `n_terms` of pi using the Wallis product.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
return 2 * product
79 changes: 61 additions & 18 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,47 +28,90 @@
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.
"""Fit the OneNearestNeighbor classifier.

And describe parameters
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.

y : array-like of shape (n_samples,)
Class labels.

Returns
-------
self : object
Fitted estimator.
"""
# Validate X and y
X, y = check_X_y(X, y)
check_classification_targets(y)

# Store training data
self.X_train_ = X
self.y_train_ = y

# Required by sklearn API
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
return self

def predict(self, X):
"""Write docstring.
"""Predict class labels using nearest neighbor.

Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.

And describe parameters
Returns
-------
y_pred : ndarray of shape (n_samples,)
Predicted labels.
"""
check_is_fitted(self)

X = check_array(X)
y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)

# XXX fix
return y_pred
# required by sklearn test: MUST match regex
if X.shape[1] != self.n_features_in_:
raise ValueError(
f"X has {X.shape[1]} features, but "
f"expects {self.n_features_in_} features as input"
)

y_pred = []

for x in X:
distances = np.linalg.norm(self.X_train_ - x, axis=1)
idx = np.argmin(distances)
y_pred.append(self.y_train_[idx])

return np.array(y_pred)

def score(self, X, y):
"""Write docstring.
"""Compute accuracy score.

And describe parameters
Parameters
----------
X : array-like
Input features.

y : array-like
True labels.

Returns
-------
accuracy : float
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return np.mean(y_pred == y)