Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 18 additions & 8 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,13 +37,18 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0
if X.ndim() != 2:
raise ValueError("input is not of dimension 2")
if type(X) is not np.ndarray:
raise ValueError("input is not np array")

max = np.argmax(X)
n_columns = X.shape[1]

# TODO

return i, j
row = max // n_columns
column = max % n_columns

return (row, column)

def wallis_product(n_terms):
"""Implement the Wallis product to compute an approximation of pi.
Expand All @@ -62,6 +67,11 @@ def wallis_product(n_terms):
pi : float
The approximation of order `n_terms` of pi using the Wallis product.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if n_terms == 0:
return 1
else:
n = 4 * np.arange(1, n_terms + 1) ** 2
pi = 2 * np.prod(n / (n - 1))
return pi


70 changes: 54 additions & 16 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,40 +35,78 @@ def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.

And describe parameters
"""
Parameters
-----------
self : instance of the class (OneNearestNeighbor)

X : array of shape(n_samples, n_features)
matrix of the features; independent and explanatory variables

y : array of shape(n_samples,)
matrix of the explained variable

Returns
-------
self : object
fitted estimator

"""
X, y = check_X_y(X, y)
check_classification_targets(y)

self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_train_ = X
self.y_train_ = y

return self

def predict(self, X):
"""Write docstring.

"""
Parameters
----------

And describe parameters
X : array of shape(n_samples, n_features)
matrix of the features; independent and explanatory variables

Returns
-------

y_pred : array of shape(n_samples,)
predictions for y
"""
check_is_fitted(self)
X = check_array(X)
y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)
y_pred = []
if X.shape[1] != self.n_features_in_:
raise ValueError(f"X has {X.shape[1]} features but expects {self.n_features_in_} features as input")

# XXX fix
return y_pred
for value in X:
distance = np.linalg.norm(self.X_train_ - value, axis=1)
index = np.argmin(distance)
y_pred.append(self.y_train_[index])

return np.array(y_pred)

def score(self, X, y):
"""Write docstring.
"""Parameters
----------

X : array of shape(n_samples, n_features)
matrix of the features; independent and explanatory variables

y : array of shape(n_samples,)
explained variable

Returns
-------
accuracy score : type float

And describe parameters
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return np.mean(y_pred == y)
Loading