Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 17 additions & 7 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
This will be enforced with `flake8`. You can check that there is no flake8
errors by calling `flake8` at the root of the repo.
"""

import numpy as np


Expand All @@ -37,12 +38,18 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0
if type(X) is not np.ndarray:
raise ValueError("Input is not a numpy array")
if X.ndim != 2:
raise ValueError("Input is not 2D")

maxid = np.argmax(X)
ncols = X.shape[1]

# TODO
row = maxid // ncols
col = maxid % ncols

return i, j
return (row, col)


def wallis_product(n_terms):
Expand All @@ -62,6 +69,9 @@ def wallis_product(n_terms):
pi : float
The approximation of order `n_terms` of pi using the Wallis product.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if n_terms == 0:
return 1
else:
num = 4 * np.arange(1, n_terms + 1) ** 2
pi = 2 * np.prod(num / (num - 1))
return pi
74 changes: 52 additions & 22 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,56 +19,86 @@
for the methods you code and for the class. The docstring will be checked using
`pydocstyle` that you can also call at the root of the repo.
"""

import numpy as np
from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from sklearn.utils.validation import check_X_y
from sklearn.utils.validation import check_array
from sklearn.utils.validation import check_is_fitted
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.utils.multiclass import check_classification_targets
from sklearn.utils.validation import check_array, check_is_fitted, check_X_y


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.

And describe parameters
"""Fit a nearest neighbor model.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
The features vector.
y : ndarray of shape (n_samples, 1)
The target vector.

Returns
-------
The fitted model.
"""
X, y = check_X_y(X, y)
X = check_array(X)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]
self.X_ = X
self.y_ = y

# XXX fix
return self

def predict(self, X):
"""Write docstring.
"""Predict target from a feature vector with a nearest neighbor model.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
The feature vector from which to predict y.

And describe parameters
Returns
-------
y_pred : ndarray of shape (n_samples, 1)
The predicted value for y.
"""
check_is_fitted(self)
X = check_array(X)
y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
shape=len(X), fill_value=self.classes_[0], dtype=self.classes_.dtype
)

# XXX fix
distances = np.linalg.norm(
X[:, np.newaxis, :] - self.X_[np.newaxis, :, :], axis=2
)
nearest_idx = np.argmin(distances, axis=1)
y_pred = self.y_[nearest_idx]

return y_pred

def score(self, X, y):
"""Write docstring.

And describe parameters
"""Return the score of a model evaluating against ground truth.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
The features vector.
y : ndarray of shape (n_samples, 1)
The target vector.

Returns
-------
score : float
The score of the model.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
score = np.mean(y_pred == y)
return score