Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 15 additions & 5 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,13 @@ def max_index(X):
i = 0
j = 0

# TODO
if not isinstance(X, np.ndarray):
raise ValueError("Input must be a numpy array")
if X.ndim != 2:
raise ValueError("Input array must be 2-dimensional")

flat_index = np.argmax(X)
i, j = np.unravel_index(flat_index, X.shape)

return i, j

Expand All @@ -60,8 +66,12 @@ def wallis_product(n_terms):
Returns
-------
pi : float
The approximation of order `n_terms` of pi using the Wallis product.
The approximation of order `n_terms` of pi using the Wallis product.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if n_terms == 0:
return 1.0

product = 1.0
for n in range(1, n_terms+1):
product *= (4 * n**2) / (4 * n**2 - 1)
return 2 * product
37 changes: 25 additions & 12 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,29 +28,37 @@
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.
"""Fit the 1-NN classifier from the training data.

And describe parameters
X : ndarray of shape (n_samples, n_features)
y : ndarray of shape (n_samples,)

Returns the fitted estimator.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_train_ = X
self.y_train_ = y

return self

def predict(self, X):
"""Write docstring.
"""Predict class labels for the provided data.

And describe parameters
X : ndarray of shape (n_samples, n_features)

Return :
y_pred : ndarray of shape (n_samples,) -> the predicted class labels.
"""
check_is_fitted(self)
X = check_array(X)
Expand All @@ -59,16 +67,21 @@ def predict(self, X):
dtype=self.classes_.dtype
)

# XXX fix
for i, x in enumerate(X):
distances = np.linalg.norm(self.X_train_ - x, axis=1)
nearest_index = np.argmin(distances)
y_pred[i] = self.y_train_[nearest_index]
return y_pred

def score(self, X, y):
"""Write docstring.
"""Return the mean accuracy on the given test data and labels.

X : ndarray of shape (n_samples, n_features)
y : ndarray of shape (n_samples,)

And describe parameters
Return the score
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
return np.mean(y_pred == y)