Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 12 additions & 6 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,10 +37,13 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0
if not isinstance(X, np.ndarray):
raise ValueError("Input should be a numpy array.")
if X.ndim != 2:
raise ValueError("Input should be a 2D numpy array.")

# TODO
index = np.argmax(X)
i, j = np.unravel_index(index, X.shape)

return i, j

Expand All @@ -62,6 +65,9 @@ def wallis_product(n_terms):
pi : float
The approximation of order `n_terms` of pi using the Wallis product.
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if n_terms == 0:
return 1
pi = 1.0
for i in range(1, n_terms + 1):
pi = pi * (4 * i ** 2) / (4 * i ** 2 - 1)
return pi * 2
54 changes: 40 additions & 14 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,34 +23,49 @@
from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from sklearn.utils.validation import check_X_y
from sklearn.utils.validation import check_array
from sklearn.utils.validation import check_is_fitted
from sklearn.utils.validation import check_array
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.
"""Fit the OneNearestNeighbor model to the given training data.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
y : ndarray of shape (n_samples,)

And describe parameters
Returns
-------
self : object
The fitted model
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_ = X
self.y_ = y
return self

def predict(self, X):
"""Write docstring.
"""Predict the labels for the given training data.

Parameters
----------
X : ndarray of shape (n_samples, n_features)

And describe parameters
Returns
-------
y_pred : ndarray of shape (n_samples,)
The predicted labels.
"""
check_is_fitted(self)
X = check_array(X)
Expand All @@ -59,16 +74,27 @@ def predict(self, X):
dtype=self.classes_.dtype
)

# XXX fix
for i in range(len(X)):
distances = np.linalg.norm(self.X_ - X[i, :], axis=1)
nearest_index = distances.argmin()
y_pred[i] = self.y_[nearest_index]
return y_pred

def score(self, X, y):
"""Write docstring.
"""Return the number of correct label predictions on the given data.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
y : ndarray of shape (n_samples,)

And describe parameters
Returns
-------
score : float
The number of correct predictions.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)
y_pred = (y_pred == y)

# XXX fix
return y_pred.sum()
return y_pred.sum()/len(y_pred)