Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 12 additions & 2 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,11 @@ def max_index(X):
j = 0

# TODO

if not isinstance(X, np.ndarray):
raise ValueError("Input is not a numpy array")
if X.ndim != 2:
raise ValueError("Input array is not 2D")
i, j = np.unravel_index(np.argmax(X), X.shape)
return i, j


Expand All @@ -64,4 +68,10 @@ def wallis_product(n_terms):
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
if n_terms == 0:
return 1.0

product = 1
for i in range(1, n_terms + 1):
product *= (4 * i**2) / (4 * i**2 - 1)
return product * 2
62 changes: 49 additions & 13 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,47 +28,83 @@
from sklearn.utils.multiclass import check_classification_targets


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
class OneNearestNeighbor(ClassifierMixin, BaseEstimator):
"""OneNearestNeighbor classifier."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.
"""Fit the OneNearestNeighbor classifier.

And describe parameters
Parameters
----------
X : ndarray of shape (n_samples, n_features)
The input array.

y : ndarray of shape (n_samples,)
Target labels for the training samples.

Returns
-------
self : OneNearestNeighbor
Fitted classifier.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_ = X
self.y_ = y
return self

def predict(self, X):
"""Write docstring.
"""Predict class labels for the input samples.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Samples for which to predict labels.

And describe parameters
Returns
-------
y_pred : ndarray of shape (n_samples,)
Predicted class labels.
"""
check_is_fitted(self)
X = check_array(X)
self._check_n_features(X, reset=False)
y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
dtype=self.classes_.dtype
)

# XXX fix
for i in range(len(X)):
dist = np.linalg.norm(self.X_ - X[i], axis=1)
nearest_idx = np.argmin(dist)
y_pred[i] = self.y_[nearest_idx]
return y_pred

def score(self, X, y):
"""Write docstring.
"""Compute the accuracy of the classifier.

And describe parameters
The accuracy is the proportion of correctly classified samples.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Test samples.

y : ndarray of shape (n_samples,)
True labels corresponding to the test samples.

Returns
-------
score :
Classification accuracy.
"""
self._check_n_features(X, reset=False)
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
y_pred = (y_pred == y).astype(int)/len(y)
return y_pred.sum()