build(deps): bump urllib3 from 2.0.4 to 2.0.7 in /drivers/gpu/drm/ci/xfails#2
Open
dependabot[bot] wants to merge 1 commit intomasterfrom
Open
Conversation
Bumps [urllib3](https://github.com/urllib3/urllib3) from 2.0.4 to 2.0.7. - [Release notes](https://github.com/urllib3/urllib3/releases) - [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst) - [Commits](urllib3/urllib3@2.0.4...2.0.7) --- updated-dependencies: - dependency-name: urllib3 dependency-type: direct:production ... Signed-off-by: dependabot[bot] <support@github.com>
l3nkz
pushed a commit
that referenced
this pull request
Oct 2, 2025
The bring up logic of a to be onlined CPU consists of several parts, which
are considered to be a single hotplug state:
1) Control CPU issues the wake-up
2) To be onlined CPU starts up, does the minimal initialization,
reports to be alive and waits for release into the complete bring-up.
3) Control CPU waits for the alive report and releases the upcoming CPU
for the complete bring-up.
Allow to split this into two states:
1) Control CPU issues the wake-up
After that the to be onlined CPU starts up, does the minimal
initialization, reports to be alive and waits for release into the
full bring-up. As this can run after the control CPU dropped the
hotplug locks the code which is executed on the AP before it reports
alive has to be carefully audited to not violate any of the hotplug
constraints, especially not modifying any of the various cpumasks.
This is really only meant to avoid waiting for the AP to react on the
wake-up. Of course an architecture can move strict CPU related setup
functionality, e.g. microcode loading, with care before the
synchronization point to save further pointless waiting time.
2) Control CPU waits for the alive report and releases the upcoming CPU
for the complete bring-up.
This allows that the two states can be split up to run all to be onlined
CPUs up to state #1 on the control CPU and then at a later point run state
#2. This spares some of the latencies of the full serialized per CPU
bringup by avoiding the per CPU wakeup/wait serialization. The assumption
is that the first AP already waits when the last AP has been woken up. This
obvioulsy depends on the hardware latencies and depending on the timings
this might still not completely eliminate all wait scenarios.
This split is just a preparatory step for enabling the parallel bringup
later. The boot time bringup is still fully serialized. It has a separate
config switch so that architectures which want to support parallel bringup
can test the split of the CPUHP_BRINGUG step separately.
To enable this the architecture must support the CPU hotplug core sync
mechanism and has to be audited that there are no implicit hotplug state
dependencies which require a fully serialized bringup.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.080801387@linutronix.de
l3nkz
pushed a commit
that referenced
this pull request
Oct 2, 2025
This implements a new interface to lockdep, lock_set_cmp_fn(), for
defining a custom ordering when taking multiple locks of the same
class.
This is an alternative to subclasses, but can not fully replace them
since subclasses allow lock hierarchies with other clasees
inter-twined, while this relies on pure class nesting.
Specifically, if A is our nesting class then:
A/0 <- B <- A/1
Would be a valid lock order with subclasses (each subclass really is a
full class from the validation PoV) but not with this annotation,
which requires all nesting to be consecutive.
Example output:
| ============================================
| WARNING: possible recursive locking detected
| 6.2.0-rc8-00003-g7d81e591ca6a-dirty #15 Not tainted
| --------------------------------------------
| kworker/14:3/938 is trying to acquire lock:
| ffff8880143218c8 (&b->lock l=0 0:2803368){++++}-{3:3}, at: bch_btree_node_get.part.0+0x81/0x2b0
|
| but task is already holding lock:
| ffff8880143de8c8 (&b->lock l=1 1048575:9223372036854775807){++++}-{3:3}, at: __bch_btree_map_nodes+0xea/0x1e0
| and the lock comparison function returns 1:
|
| other info that might help us debug this:
| Possible unsafe locking scenario:
|
| CPU0
| ----
| lock(&b->lock l=1 1048575:9223372036854775807);
| lock(&b->lock l=0 0:2803368);
|
| *** DEADLOCK ***
|
| May be due to missing lock nesting notation
|
| 3 locks held by kworker/14:3/938:
| #0: ffff888005ea9d38 ((wq_completion)bcache){+.+.}-{0:0}, at: process_one_work+0x1ec/0x530
| #1: ffff8880098c3e70 ((work_completion)(&cl->work)#3){+.+.}-{0:0}, at: process_one_work+0x1ec/0x530
| #2: ffff8880143de8c8 (&b->lock l=1 1048575:9223372036854775807){++++}-{3:3}, at: __bch_btree_map_nodes+0xea/0x1e0
[peterz: extended changelog]
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230509195847.1745548-1-kent.overstreet@linux.dev
l3nkz
pushed a commit
that referenced
this pull request
Oct 2, 2025
UEFI Specification version 2.9 introduces the concept of memory
acceptance. Some Virtual Machine platforms, such as Intel TDX or AMD
SEV-SNP, require memory to be accepted before it can be used by the
guest. Accepting happens via a protocol specific to the Virtual Machine
platform.
There are several ways the kernel can deal with unaccepted memory:
1. Accept all the memory during boot. It is easy to implement and it
doesn't have runtime cost once the system is booted. The downside is
very long boot time.
Accept can be parallelized to multiple CPUs to keep it manageable
(i.e. via DEFERRED_STRUCT_PAGE_INIT), but it tends to saturate
memory bandwidth and does not scale beyond the point.
2. Accept a block of memory on the first use. It requires more
infrastructure and changes in page allocator to make it work, but
it provides good boot time.
On-demand memory accept means latency spikes every time kernel steps
onto a new memory block. The spikes will go away once workload data
set size gets stabilized or all memory gets accepted.
3. Accept all memory in background. Introduce a thread (or multiple)
that gets memory accepted proactively. It will minimize time the
system experience latency spikes on memory allocation while keeping
low boot time.
This approach cannot function on its own. It is an extension of #2:
background memory acceptance requires functional scheduler, but the
page allocator may need to tap into unaccepted memory before that.
The downside of the approach is that these threads also steal CPU
cycles and memory bandwidth from the user's workload and may hurt
user experience.
Implement #1 and #2 for now. #2 is the default. Some workloads may want
to use #1 with accept_memory=eager in kernel command line. #3 can be
implemented later based on user's demands.
Support of unaccepted memory requires a few changes in core-mm code:
- memblock accepts memory on allocation. It serves early boot memory
allocations and doesn't limit them to pre-accepted pool of memory.
- page allocator accepts memory on the first allocation of the page.
When kernel runs out of accepted memory, it accepts memory until the
high watermark is reached. It helps to minimize fragmentation.
EFI code will provide two helpers if the platform supports unaccepted
memory:
- accept_memory() makes a range of physical addresses accepted.
- range_contains_unaccepted_memory() checks anything within the range
of physical addresses requires acceptance.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mike Rapoport <rppt@linux.ibm.com> # memblock
Link: https://lore.kernel.org/r/20230606142637.5171-2-kirill.shutemov@linux.intel.com
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.
Bumps urllib3 from 2.0.4 to 2.0.7.
Release notes
Sourced from urllib3's releases.
Changelog
Sourced from urllib3's changelog.
Commits
56f01e0Release 2.0.74e50fbcMerge pull request from GHSA-g4mx-q9vg-27p480808b0Fix docs build on Python 3.12 (#3144)f28deffAdd 1.26.17 to the current changelog262e3e3Release 2.0.6644124eMerge pull request from GHSA-v845-jxx5-vc9f740380cBump cryptography from 41.0.3 to 41.0.4 (#3131)d9f85a7Release 2.0.5d41f412Undeprecate pyOpenSSL module (#3127)b6c04cbFix a link to "absolute URI" definition (#3128)Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting
@dependabot rebase.Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR:
@dependabot rebasewill rebase this PR@dependabot recreatewill recreate this PR, overwriting any edits that have been made to it@dependabot mergewill merge this PR after your CI passes on it@dependabot squash and mergewill squash and merge this PR after your CI passes on it@dependabot cancel mergewill cancel a previously requested merge and block automerging@dependabot reopenwill reopen this PR if it is closed@dependabot closewill close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually@dependabot show <dependency name> ignore conditionswill show all of the ignore conditions of the specified dependency@dependabot ignore this major versionwill close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)@dependabot ignore this minor versionwill close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)@dependabot ignore this dependencywill close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)You can disable automated security fix PRs for this repo from the Security Alerts page.