Skip to content

build(deps): bump urllib3 from 2.0.4 to 2.0.7 in /drivers/gpu/drm/ci/xfails#2

Open
dependabot[bot] wants to merge 1 commit intomasterfrom
dependabot/pip/drivers/gpu/drm/ci/xfails/urllib3-2.0.7
Open

build(deps): bump urllib3 from 2.0.4 to 2.0.7 in /drivers/gpu/drm/ci/xfails#2
dependabot[bot] wants to merge 1 commit intomasterfrom
dependabot/pip/drivers/gpu/drm/ci/xfails/urllib3-2.0.7

Conversation

@dependabot
Copy link

@dependabot dependabot bot commented on behalf of github Nov 13, 2023

Bumps urllib3 from 2.0.4 to 2.0.7.

Release notes

Sourced from urllib3's releases.

2.0.7

  • Made body stripped from HTTP requests changing the request method to GET after HTTP 303 "See Other" redirect responses. (GHSA-g4mx-q9vg-27p4)

2.0.6

  • Added the Cookie header to the list of headers to strip from requests when redirecting to a different host. As before, different headers can be set via Retry.remove_headers_on_redirect. (GHSA-v845-jxx5-vc9f)

2.0.5

  • Allowed pyOpenSSL third-party module without any deprecation warning. #3126
  • Fixed default blocksize of HTTPConnection classes to match high-level classes. Previously was 8KiB, now 16KiB. #3066
Changelog

Sourced from urllib3's changelog.

2.0.7 (2023-10-17)

  • Made body stripped from HTTP requests changing the request method to GET after HTTP 303 "See Other" redirect responses.

2.0.6 (2023-10-02)

  • Added the Cookie header to the list of headers to strip from requests when redirecting to a different host. As before, different headers can be set via Retry.remove_headers_on_redirect.

2.0.5 (2023-09-20)

  • Allowed pyOpenSSL third-party module without any deprecation warning. ([#3126](https://github.com/urllib3/urllib3/issues/3126) <https://github.com/urllib3/urllib3/issues/3126>__)
  • Fixed default blocksize of HTTPConnection classes to match high-level classes. Previously was 8KiB, now 16KiB. ([#3066](https://github.com/urllib3/urllib3/issues/3066) <https://github.com/urllib3/urllib3/issues/3066>__)
Commits

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    You can disable automated security fix PRs for this repo from the Security Alerts page.

Bumps [urllib3](https://github.com/urllib3/urllib3) from 2.0.4 to 2.0.7.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](urllib3/urllib3@2.0.4...2.0.7)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
@dependabot dependabot bot added the dependencies Pull requests that update a dependency file label Nov 13, 2023
l3nkz pushed a commit that referenced this pull request Oct 2, 2025
The bring up logic of a to be onlined CPU consists of several parts, which
are considered to be a single hotplug state:

  1) Control CPU issues the wake-up

  2) To be onlined CPU starts up, does the minimal initialization,
     reports to be alive and waits for release into the complete bring-up.

  3) Control CPU waits for the alive report and releases the upcoming CPU
     for the complete bring-up.

Allow to split this into two states:

  1) Control CPU issues the wake-up

     After that the to be onlined CPU starts up, does the minimal
     initialization, reports to be alive and waits for release into the
     full bring-up. As this can run after the control CPU dropped the
     hotplug locks the code which is executed on the AP before it reports
     alive has to be carefully audited to not violate any of the hotplug
     constraints, especially not modifying any of the various cpumasks.

     This is really only meant to avoid waiting for the AP to react on the
     wake-up. Of course an architecture can move strict CPU related setup
     functionality, e.g. microcode loading, with care before the
     synchronization point to save further pointless waiting time.

  2) Control CPU waits for the alive report and releases the upcoming CPU
     for the complete bring-up.

This allows that the two states can be split up to run all to be onlined
CPUs up to state #1 on the control CPU and then at a later point run state
#2. This spares some of the latencies of the full serialized per CPU
bringup by avoiding the per CPU wakeup/wait serialization. The assumption
is that the first AP already waits when the last AP has been woken up. This
obvioulsy depends on the hardware latencies and depending on the timings
this might still not completely eliminate all wait scenarios.

This split is just a preparatory step for enabling the parallel bringup
later. The boot time bringup is still fully serialized. It has a separate
config switch so that architectures which want to support parallel bringup
can test the split of the CPUHP_BRINGUG step separately.

To enable this the architecture must support the CPU hotplug core sync
mechanism and has to be audited that there are no implicit hotplug state
dependencies which require a fully serialized bringup.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.080801387@linutronix.de
l3nkz pushed a commit that referenced this pull request Oct 2, 2025
This implements a new interface to lockdep, lock_set_cmp_fn(), for
defining a custom ordering when taking multiple locks of the same
class.

This is an alternative to subclasses, but can not fully replace them
since subclasses allow lock hierarchies with other clasees
inter-twined, while this relies on pure class nesting.

Specifically, if A is our nesting class then:

  A/0 <- B <- A/1

Would be a valid lock order with subclasses (each subclass really is a
full class from the validation PoV) but not with this annotation,
which requires all nesting to be consecutive.

Example output:

| ============================================
| WARNING: possible recursive locking detected
| 6.2.0-rc8-00003-g7d81e591ca6a-dirty #15 Not tainted
| --------------------------------------------
| kworker/14:3/938 is trying to acquire lock:
| ffff8880143218c8 (&b->lock l=0 0:2803368){++++}-{3:3}, at: bch_btree_node_get.part.0+0x81/0x2b0
|
| but task is already holding lock:
| ffff8880143de8c8 (&b->lock l=1 1048575:9223372036854775807){++++}-{3:3}, at: __bch_btree_map_nodes+0xea/0x1e0
| and the lock comparison function returns 1:
|
| other info that might help us debug this:
|  Possible unsafe locking scenario:
|
|        CPU0
|        ----
|   lock(&b->lock l=1 1048575:9223372036854775807);
|   lock(&b->lock l=0 0:2803368);
|
|  *** DEADLOCK ***
|
|  May be due to missing lock nesting notation
|
| 3 locks held by kworker/14:3/938:
|  #0: ffff888005ea9d38 ((wq_completion)bcache){+.+.}-{0:0}, at: process_one_work+0x1ec/0x530
|  #1: ffff8880098c3e70 ((work_completion)(&cl->work)#3){+.+.}-{0:0}, at: process_one_work+0x1ec/0x530
|  #2: ffff8880143de8c8 (&b->lock l=1 1048575:9223372036854775807){++++}-{3:3}, at: __bch_btree_map_nodes+0xea/0x1e0

[peterz: extended changelog]
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230509195847.1745548-1-kent.overstreet@linux.dev
l3nkz pushed a commit that referenced this pull request Oct 2, 2025
UEFI Specification version 2.9 introduces the concept of memory
acceptance. Some Virtual Machine platforms, such as Intel TDX or AMD
SEV-SNP, require memory to be accepted before it can be used by the
guest. Accepting happens via a protocol specific to the Virtual Machine
platform.

There are several ways the kernel can deal with unaccepted memory:

 1. Accept all the memory during boot. It is easy to implement and it
    doesn't have runtime cost once the system is booted. The downside is
    very long boot time.

    Accept can be parallelized to multiple CPUs to keep it manageable
    (i.e. via DEFERRED_STRUCT_PAGE_INIT), but it tends to saturate
    memory bandwidth and does not scale beyond the point.

 2. Accept a block of memory on the first use. It requires more
    infrastructure and changes in page allocator to make it work, but
    it provides good boot time.

    On-demand memory accept means latency spikes every time kernel steps
    onto a new memory block. The spikes will go away once workload data
    set size gets stabilized or all memory gets accepted.

 3. Accept all memory in background. Introduce a thread (or multiple)
    that gets memory accepted proactively. It will minimize time the
    system experience latency spikes on memory allocation while keeping
    low boot time.

    This approach cannot function on its own. It is an extension of #2:
    background memory acceptance requires functional scheduler, but the
    page allocator may need to tap into unaccepted memory before that.

    The downside of the approach is that these threads also steal CPU
    cycles and memory bandwidth from the user's workload and may hurt
    user experience.

Implement #1 and #2 for now. #2 is the default. Some workloads may want
to use #1 with accept_memory=eager in kernel command line. #3 can be
implemented later based on user's demands.

Support of unaccepted memory requires a few changes in core-mm code:

  - memblock accepts memory on allocation. It serves early boot memory
    allocations and doesn't limit them to pre-accepted pool of memory.

  - page allocator accepts memory on the first allocation of the page.
    When kernel runs out of accepted memory, it accepts memory until the
    high watermark is reached. It helps to minimize fragmentation.

EFI code will provide two helpers if the platform supports unaccepted
memory:

 - accept_memory() makes a range of physical addresses accepted.

 - range_contains_unaccepted_memory() checks anything within the range
   of physical addresses requires acceptance.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>	# memblock
Link: https://lore.kernel.org/r/20230606142637.5171-2-kirill.shutemov@linux.intel.com
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

dependencies Pull requests that update a dependency file

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants