Skip to content

kyk120/PointFix

Repository files navigation

PointFix: Learning to Fix Domain Bias for Robust Online Stereo Adaptation(PointFix) ECCV 2022

Kwonyoung Kim1 Jungin Park1 Jiyoung Lee2 Dongbo Min3 Kwanghoon Sohn1

1Yonsei University
2NAVER AI LAB
3Ewha University

Required packages can be found in the packagelist.txt.

We start PointFix training from the pretrained initial weights and they can be found in the Real-Time Self-Adaptive Deep Stereo page.

MADNet parameters pretrained by PointFix are available here.

Example of PointFix training for MADNet:

OUTPUT="path/to/output/folder"
DATASET="./example_dataset.csv"
BATCH_SIZE="4"
ITERATIONS=30000
PRETRAINED_WEIGHTS="./pretrained_nets/MADNet/synthetic/weights.ckpt"
MODEL_NAME="MADNet"
LR="0.0001"
ALPHA="0.00001"
LOSS="mean_l1"
ADAPTATION_LOSS="mean_SSIM_l1"
META_ALGORITHM="PointFix"
RESIZE_SHAPE="380 640"
DATASET_PARAM="Synthia"

python train_pointfix.py --dataset $DATASET -o $OUT_FOLDER -b $BATCH_SIZE -n $ITERATIONS --adaptationSteps $ADAPTATION_ITERATION \
--weights $PRETRAINED_WEIGHTS --lr $LR --alpha $ALPHA --loss $LOSS --adaptationLoss $ADAPTATION_LOSS --unSupervisedMeta \
--metaAlgorithm $META_ALGORITHM --resizeShape $RESIZE_SHAPE --dataset_param $DATASET_PARAM \
--modelName $MODEL_NAME

Example of online adaptation test using MADNet and MAD:

LIST="./example_sequence.csv" 
OUTPUT="path/to/output/folder"
WEIGHTS="path/to/pretrained/network"
MODELNAME="MADNet"
BLOCKCONFIG="block_config/MadNet_full.json"
MODE="MAD"
LR=0.00001

python3 test_online_adaptation.py \
    -l ${LIST} \
    -o ${OUTPUT} \
    --weights ${WEIGHTS} \
    --modelName MADNet \
    --blockConfig ${BLOCKCONFIG} \
    --mode ${MODE} \
    --sampleMode PROBABILITY \
    --logDispStep 1 \
    --lr ${LR}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages