Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added Sets and Relations (TeX).pdf
Binary file not shown.
257 changes: 257 additions & 0 deletions Sets and Relations.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,257 @@
\title{Sets 4 Relations}
\date{}
\author{}
\documentclass{article}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage[usenames,dvipsnames]{color}
\usepackage{amsthm, thmtools}
\usepackage{fullpage, changepage, tabto}
\usepackage{enumerate, enumitem}
\usepackage{mathtools}
\usepackage[colorlinks=true, linkcolor=BlueGreen, citecolor=BlueGreen, urlcolor=BlueGreen]{hyperref}

% set tab distances
\NumTabs{16}

%%% theorem environments for styling
% notation
\declaretheoremstyle[
notefont={\normalfont},
spaceabove={0.5em},
spacebelow={0.5em},
notebraces={}{},
headformat={\NOTE},
headpunct={},
postheadhook={\hspace{0em}\tabto{4em}},
]{notation}
\declaretheorem[style=notation]{notation}

% definition
\declaretheoremstyle[
headfont={\itshape},
notefont={\normalfont\bfseries},
spaceabove={1em},
notebraces={}{},
headformat={def \NOTE \newline},
headpunct={ },
postheadhook={\hspace{0em}\vspace{0.25em}\tab},
]{definition}
\declaretheorem[style=definition,name=Definition,
refname={definition,definitions}]{definition}

% note
\declaretheoremstyle[
headfont={\bfseries},
shaded={margin={1.5em}, textwidth={20em}},
headformat={note: \newline},
headpunct={ },
]{note}
\declaretheorem[style=note]{note}


% prettier empty set
\newcommand{\nullset}{\varnothing}

% logic spacing
\newcommand{\spaced}[1]{\, #1 \,}
\newcommand{\scomp}{\spaced{\backslash}}
\newcommand{\sland}{\spaced{\land}}
\newcommand{\slor}{\spaced{\lor}}
\newcommand{\simplies}{\spaced{\Rightarrow}}
\newcommand{\slexists}{\, \exists}

% set macros
\newcommand{\buildset}[2]{\{\spaced{#1} \mid \spaced{#2} \}}
\newcommand{\finiteset}[3]{\{ \spaced{#1,} \spaced{#2,} \spaced{#3,} \spaced{\dots} \}}

\begin{document}
\maketitle
\tableofcontents
\newpage
\section{notation}
\vspace{1em}
% --- changes in some sections to update note shorthand to clear text
\begin{notation}[$\mathbb{R}$]
the set of real numbers
\end{notation}
\begin{notation}[$\mathbb{C}$]
the set of complex numbers
\end{notation}
\begin{notation}[$\mathbb{Q}$]
the set of rational numbers \tab\tab $\buildset{\frac{n}{m}}{n, m \in \mathbb{Z} \sland m \not= 0 \sland \gcd(n, m) = 1}$
\end{notation}
\begin{notation}[$\mathbb{Z}$]
the set of integers
\end{notation}
\begin{notation}[$\mathbb{N}$]
the set of natural numbers \tab\tab $\finiteset{1}{2}{3}$
\end{notation}
\begin{notation}[$A^*$]
the non-zero elements of $A$ \tab\tab $\buildset{a \in A}{a \not= 0}$
\end{notation}
\begin{notation}[$A^+$]
the positive elements of $A$ \tab\tab
$\buildset{a \in A}{a > 0}$
\end{notation}
\begin{notation}[$A^-$]
the negative elements of $A$ \tab\tab
$\buildset{a \in A}{a < 0}$
\end{notation}
\begin{notation}[$\mathbb{R} \scomp \mathbb{Q}$]
the set of irrational numbers \tab\tab $\buildset{a \in \mathbb{R}}{a \notin \mathbb{Q}}$
\tab note: $(\mathbb{R} \scomp \mathbb{Q}) \cap \mathbb{Q} = \nullset$
\end{notation}
\begin{notation}[$\exists x$]
there exists at least one $x$
\end{notation}
\begin{notation}[$\exists 'x$]
there exists only one $x$
\end{notation}

\newpage
\section{set definitions}
\vspace{1em}

\color{blue}
\begin{definition}[subset]\label{subset}
$A$ is a \textbf{subset} of $B$ $A \subseteq B$ iff $\forall a \in A, \, a \in B$
\end{definition}

\color{ForestGreen}
\begin{definition}[proper subset]\label{proper subset}
% ---changed from the notes which said
% $A$ is a \textbf{proper subset} of $B$ iff $\forall a \in A,
% a \in B \land \exists b \in B, b \in A$ (denoted $A \subset B$)
$A$ is a \textbf{proper subset} of $B$ iff $\forall a \in A, a \in B \sland \slexists b \in B, b \not\in A$ (denoted $A \subset B$)
\end{definition}

\color{Red}
\begin{definition}[relation]\label{relation}
a \textbf{relation} $\mathcal{R}$ on a set $A$ is a subset of $A \times A$ \tab\tab $\mathcal{R} \subseteq A \times A$
\end{definition}

\color{Purple}
\begin{definition}[equivalence relation]\label{equivalence relation}
$\mathcal{R}$ is an \textbf{equivalence relation} iff
\begin{enumerate}[label={\arabic*)}, partopsep=0.5em, itemsep=0.25em, left=6em]

\item it is \textbf{reflexive}
\begin{definition}[reflexive]\label{reflexive}
$\forall a \in A, \; a\mathcal{R}a \quad ((a, a) \in \mathcal{R})$\end{definition}
% --- changed from notes which had for all a, a in A

\item it is \textbf{symmetric}
\begin{definition}[symmetric]\label{symmetric}
$\forall \, a, \, b \in A, \; a\mathcal{R}b \simplies b\mathcal{R}a$
\end{definition}

\item it is \textbf{transitive}
\begin{definition}[transitive]\label{transitive}
$\forall \, a, \, b, \, c \in A, \; a\mathcal{R}b \sland b\mathcal{R}c \simplies a\mathcal{R}c$
\end{definition}

\end{enumerate}
\end{definition}

\color{Black}
\newpage
\section{set operations}

\begin{notation}[$A \cup B$]
union \tab\tab\tab\tab\tab\tab $\buildset{x}{x \in A \slor x \in B}$
\end{notation}

\begin{notation}[$A \cap B$]
intersection \tab\tab\tab\tab\tab $\buildset{x}{x \in A \sland x \in B}$
\end{notation}

\begin{notation}[$A \scomp B$]
complement of $B$ in $A$ \tab\tab\tab $\buildset{x}{x \in A \sland x \not\in B}$
\end{notation}

\begin{notation}[$A \times B$]
cartesian product of $A$ and $B$ \tab $\buildset{(x,\, y)}{x \in A \sland x \in B}$
\end{notation}

\vspace{1em}
\begin{note}
\hspace{1em}\vspace{1em}
$$\begin{rcases*}
A \cup B = B \cup A \quad \\
A \cap B = B \cap A \quad \\
\end{rcases*} \quad \text{commutative}$$
$$\quad\quad A \times B \not= B \times A \quad \big\rbrace \quad \text {not commutative}$$
\end{note}
\vspace{1em}

\newpage
\section{properties of relations}
% --- reordered these for ease of reading

\color{Red}
\begin{definition}[injective]\label{injective}
a function $f: \, A \rightarrow B$ is
\textbf{injective} (one-to-one) iff $\forall \, a_1, a_2 \in A, \, f(a_1) = f(a_2) \simplies a_1 = a_2$
\end{definition}

\begin{definition}[surjective]\label{surjective}
$f: \, A \rightarrow B$ is
\textbf{surjective} (onto) iff $\forall b \in B \, \slexists a \in A \text{ where } f(a) = b$
\end{definition}

\begin{definition}[bijective]\label{bijective}
a function $f: \, A \rightarrow B$ is \textbf{bijective} iff it is
\nameref{injective} (one-to-one) and \nameref{surjective} (onto $B$).
\color{Black}

\begin{note}
\tab a bijective function has an inverse
\end{note}
\end{definition}

\newpage
\color{Black}
\section{cardinality}

\begin{definition}[equinumerous]\label{equinumerous}
\hspace{0em}\vspace{-1em}\\
\tab\tab having the same cardinality (size)\newline
\vspace{1em}
\tab let $S$ be a collection of sets and $\mathcal{R}$ a \nameref{relation} on $S$.\newline
\vspace{1em}
\tab let $A,\, B$ be sets and $A,\, B \in S$. $A\mathcal{R}B$ iff $\exists f$ where $f: A \rightarrow B$ and $f$ is \nameref{bijective}. if $A\mathcal{R}B$, $A$ and $B$ are \newline
\tab\tab equinumerous because they have a one-to-one correspondence\newline
\vspace{1em}
\tab consider:

\begin{proof}[\unskip\nopunct]
\begin{enumerate}[label={\arabic*)}, partopsep=1em, itemsep=0.25em, left=6em]

\item $\forall A \in S, \, A\mathcal{R}A$ because $\exists f = \text{id}_{A}: A \rightarrow A$ as $f$, bijective, and so $\mathcal{R}$ is \nameref{reflexive}

\item $\forall A, \, B \in S$, $A\mathcal{R}B \simplies B\mathcal{R}A$ because $\exists f: A \rightarrow B$ and as $f$ is bijective $\exists g = f^{-1}: B \rightarrow A$, so $\mathcal{R}$ is \nameref{symmetric}
\item $\forall A, \, B, \, C \in S, \, A\mathcal{R}B \sland B\mathcal{R}C \simplies A\mathcal{R}C$ as $\exists f: A \rightarrow B,\slexists g: B \rightarrow C$ and $f,\, g$ are bijective $\Rightarrow \slexists h: A \rightarrow C$ so $\mathcal{R}$ is \nameref{transitive}

\end{enumerate}

\vspace{1em}
\tab thus $\mathcal{R}$ is an \nameref{equivalence relation} on $S$ and partitions $S$
\end{proof}

\begin{note}
\hspace{0em}\vspace{0.5em}
\tab $E_A = \buildset{\mathcal{R} \in S}{A\mathcal{R}B}$ contains all the \newline
\tab\tab sets of size $|A|$
\end{note}

\end{definition}

\begin{definition}[denumerable]\label{denumerable}
a set $A$ is \textbf{denumerable} iff $A$ is \nameref{equinumerous} to $\mathbb{N}$
\end{definition}

\begin{definition}[countable]\label{countable}
a set $A$ is \textbf{countable} iff $A$ is finite or \nameref{denumerable}
\end{definition}

\end{document}