Skip to content

Conversation

@dependabot
Copy link

@dependabot dependabot bot commented on behalf of github Oct 23, 2021

Bumps xgboost from 1.3.3 to 1.5.0.

Release notes

Sourced from xgboost's releases.

Release 1.5.0 stable

This release comes with many exciting new features and optimizations, along with some bug fixes. We will describe the experimental categorical data support and the external memory interface independently. Package-specific new features will be listed in respective sections.

Development on categorical data support

In version 1.3, XGBoost introduced an experimental feature for handling categorical data natively, without one-hot encoding. XGBoost can fit categorical splits in decision trees. (Currently, the generated splits will be of form x \in {v}, where the input is compared to a single category value. A future version of XGBoost will generate splits that compare the input against a list of multiple category values.)

Most of the other features, including prediction, SHAP value computation, feature importance, and model plotting were revised to natively handle categorical splits. Also, all Python interfaces including native interface with and without quantized DMatrix, scikit-learn interface, and Dask interface now accept categorical data with a wide range of data structures support including numpy/cupy array and cuDF/pandas/modin dataframe. In practice, the following are required for enabling categorical data support during training:

  • Use Python package.
  • Use gpu_hist to train the model.
  • Use JSON model file format for saving the model.

Once the model is trained, it can be used with most of the features that are available on the Python package. For a quick introduction, see https://xgboost.readthedocs.io/en/latest/tutorials/categorical.html

Related PRs: (#7011, #7001, #7042, #7041, #7047, #7043, #7036, #7054, #7053, #7065, #7213, #7228, #7220, #7221, #7231, #7306)

  • Next steps

    • Revise the CPU training algorithm to handle categorical data natively and generate categorical splits
    • Extend the CPU and GPU algorithms to generate categorical splits of form x \in S where the input is compared with multiple category values. split. (#7081)

External memory

This release features a brand-new interface and implementation for external memory (also known as out-of-core training). (#6901, #7064, #7088, #7089, #7087, #7092, #7070, #7216). The new implementation leverages the data iterator interface, which is currently used to create DeviceQuantileDMatrix. For a quick introduction, see https://xgboost.readthedocs.io/en/latest/tutorials/external_memory.html#data-iterator . During the development of this new interface, lz4 compression is removed. (#7076). Please note that external memory support is still experimental and not ready for production use yet. All future development will focus on this new interface and users are advised to migrate. (You are using the old interface if you are using a URL suffix to use external memory.)

New features in Python package

... (truncated)

Changelog

Sourced from xgboost's changelog.

v1.5.0 (2021 Oct 11)

This release comes with many exciting new features and optimizations, along with some bug fixes. We will describe the experimental categorical data support and the external memory interface independently. Package-specific new features will be listed in respective sections.

Development on categorical data support

In version 1.3, XGBoost introduced an experimental feature for handling categorical data natively, without one-hot encoding. XGBoost can fit categorical splits in decision trees. (Currently, the generated splits will be of form x \in {v}, where the input is compared to a single category value. A future version of XGBoost will generate splits that compare the input against a list of multiple category values.)

Most of the other features, including prediction, SHAP value computation, feature importance, and model plotting were revised to natively handle categorical splits. Also, all Python interfaces including native interface with and without quantized DMatrix, scikit-learn interface, and Dask interface now accept categorical data with a wide range of data structures support including numpy/cupy array and cuDF/pandas/modin dataframe. In practice, the following are required for enabling categorical data support during training:

  • Use Python package.
  • Use gpu_hist to train the model.
  • Use JSON model file format for saving the model.

Once the model is trained, it can be used with most of the features that are available on the Python package. For a quick introduction, see https://xgboost.readthedocs.io/en/latest/tutorials/categorical.html

Related PRs: (#7011, #7001, #7042, #7041, #7047, #7043, #7036, #7054, #7053, #7065, #7213, #7228, #7220, #7221, #7231, #7306)

  • Next steps

    • Revise the CPU training algorithm to handle categorical data natively and generate categorical splits
    • Extend the CPU and GPU algorithms to generate categorical splits of form x \in S where the input is compared with multiple category values. split. (#7081)

External memory

This release features a brand-new interface and implementation for external memory (also known as out-of-core training). (#6901, #7064, #7088, #7089, #7087, #7092, #7070, #7216). The new implementation leverages the data iterator interface, which is currently used to create DeviceQuantileDMatrix. For a quick introduction, see https://xgboost.readthedocs.io/en/latest/tutorials/external_memory.html#data-iterator . During the development of this new interface, lz4 compression is removed. (#7076). Please note that external memory support is still experimental and not ready for production use yet. All future development will focus on this new interface and users are advised to migrate. (You are using the old interface if you are using a URL suffix to use external memory.)

... (truncated)

Commits

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

Bumps [xgboost](https://github.com/dmlc/xgboost) from 1.3.3 to 1.5.0.
- [Release notes](https://github.com/dmlc/xgboost/releases)
- [Changelog](https://github.com/dmlc/xgboost/blob/master/NEWS.md)
- [Commits](dmlc/xgboost@v1.3.3...v1.5.0)

---
updated-dependencies:
- dependency-name: xgboost
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
@dependabot dependabot bot added the dependencies Pull requests that update a dependency file label Oct 23, 2021
@dependabot @github
Copy link
Author

dependabot bot commented on behalf of github Nov 27, 2021

Superseded by #80.

@dependabot dependabot bot closed this Nov 27, 2021
@dependabot dependabot bot deleted the dependabot/pip/python/requirements/tune/xgboost-1.5.0 branch November 27, 2021 08:06
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

dependencies Pull requests that update a dependency file

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant