Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
from dataset_mask_val import Dataset as Dataset_val
import os
import torch
from network import Res_Deeplab
from one_shot_network import Res_Deeplab
import torch.nn as nn
import numpy as np

Expand Down Expand Up @@ -67,16 +67,17 @@
options = parser.parse_args()


data_dir = '/your/dataset/dir/VOCdevkit/VOC2012'
data_dir = 'data'




#set gpus
gpu_list = [int(x) for x in options.gpu.split(',')]
#print(gpu_list)
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = options.gpu

#print(os.environ['CUDA_VISIBLE_DEVICES'])
torch.backends.cudnn.benchmark = True


Expand All @@ -100,7 +101,7 @@
model = Res_Deeplab(num_classes=num_class)
#load resnet-50 preatrained parameter
model = load_resnet50_param(model, stop_layer='layer4')
model=nn.DataParallel(model,[0,1])
#model=nn.DataParallel(model,[0,1])

# disable the gradients of not optomized layers
turn_off(model)
Expand Down Expand Up @@ -136,8 +137,7 @@



optimizer = optim.SGD([{'params': get_10x_lr_params(model), 'lr': 10 * learning_rate}],
lr=learning_rate, momentum=momentum, weight_decay=weight_decay)
optimizer = optim.SGD([{'params': get_10x_lr_params(model), 'lr': 10 * learning_rate}], lr=learning_rate, momentum=momentum, weight_decay=weight_decay)



Expand Down
34 changes: 17 additions & 17 deletions utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,10 +40,10 @@ def optim_or_not(model, yes):


def turn_off(model):
optim_or_not(model.module.conv1, False)
optim_or_not(model.module.layer1, False)
optim_or_not(model.module.layer2, False)
optim_or_not(model.module.layer3, False)
optim_or_not(model.conv1, False)
optim_or_not(model.layer1, False)
optim_or_not(model.layer2, False)
optim_or_not(model.layer3, False)



Expand All @@ -54,18 +54,18 @@ def get_10x_lr_params(model):
"""

b = []
b.append(model.module.layer5.parameters())
b.append(model.module.layer55.parameters())
b.append(model.module.layer6_0.parameters())
b.append(model.module.layer6_1.parameters())
b.append(model.module.layer6_2.parameters())
b.append(model.module.layer6_3.parameters())
b.append(model.module.layer6_4.parameters())
b.append(model.module.layer7.parameters())
b.append(model.module.layer9.parameters())
b.append(model.module.residule1.parameters())
b.append(model.module.residule2.parameters())
b.append(model.module.residule3.parameters())
b.append(model.layer5.parameters())
b.append(model.layer55.parameters())
b.append(model.layer6_0.parameters())
b.append(model.layer6_1.parameters())
b.append(model.layer6_2.parameters())
b.append(model.layer6_3.parameters())
b.append(model.layer6_4.parameters())
b.append(model.layer7.parameters())
b.append(model.layer9.parameters())
b.append(model.residule1.parameters())
b.append(model.residule2.parameters())
b.append(model.residule3.parameters())

for j in range(len(b)):
for i in b[j]:
Expand Down Expand Up @@ -129,4 +129,4 @@ def get_iou_v1(query_mask,pred_label,mode='foreground'):#pytorch 1.0 version
union_list.append(union)
iou_list.append(0)
num_predict_list.append(num_predict)
return inter_list,union_list,iou_list,num_predict_list
return inter_list,union_list,iou_list,num_predict_list