Re-coding for Uncertainties: Edge-awareness Semantic Concordance for Resilient Event-RGB Segmentation
NeurIPS 2025
Authors: Nan Bao, Yifan Zhao, Lin Zhu, Jia Li
conda create -n ESC python=3.11.7
conda activate ESC
conda install mkl==2023.1.0 numpy==1.26.3
conda install pytorch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 pytorch-cuda=12.1 -c pytorch -c nvidia
pip install opencv-python==4.9.0.80 tqdm==4.66.1 pythae==0.1.2 timm==0.9.12 fvcore==0.1.5.post20221221 mmcv==2.1.0 seaborn==0.13.2-
Download the SegFormer pretrained models and our pretrained edge dictionary models based on VQ-VAE from here.
-
Move all pretrained models to the
./pretraineddirectory.
-
Download DERS-XS, DERS-XR, and DSEC-Xtrm from here.
-
Unzip the files and create symbolic links to the
./datadirectory.ln -s /path/to/DERS_XS ./data/DERS_XS ln -s /path/to/DERS_XR ./data/DERS_XR ln -s /path/to/DSEC ./data/DSEC
-
Download the files
event_left.zipandimage_timestamps.txtfor the following sequences from the official DSEC website:zurich_city_00_a, zurich_city_01_a, zurich_city_02_a, zurich_city_04_a, zurich_city_05_a, zurich_city_06_a, zurich_city_07_a, zurich_city_08_a, zurich_city_13_a, zurich_city_14_c, zurich_city_15_aUnzip the downloaded files and organize them into the following directory structure:
. ├── DSEC_test │ ├── zurich_city_13_a │ │ ├── events │ │ │ └── left │ │ │ ├── events.h5 │ │ │ └── rectify_map.h5 │ │ └── images │ │ │ └── timestamps.txt │ ├── zurich_city_14_c │ │ └── ... │ └── zurich_city_15_a │ └── ... └── DSEC_train ├── zurich_city_00_a │ └── ... ├── zurich_city_01_a │ └── ... └── ... -
Update the paths in
./scripts/prepare_dsec_semantic/prepare_dsec_semantic.sh:input_path_train=/path/to/DSEC/DSEC_train input_path_test=/path/to/DSEC/DSEC_test
Then execute the script:
bash ./scripts/prepare_dsec_semantic/prepare_dsec_semantic.sh
This script processes the raw event data from DSEC-Semantic and organizes the processed data into
./data/DSEC.
-
Download our released models from here.
-
Move the downloaded models to the directory:
./ckpt/{task_name}/{model_name}. Here, {task_name} corresponds to the task name specified in the configuration .yaml files. -
Run the following commands to evaluate the models:
python main.py --eval --config-file ./configs/ESC-DERS_XS.yaml --model-name ESC-DERS_XS.pth.tar
python main.py --eval --config-file ./configs/ESC-DERS_XR.yaml --model-name ESC-DERS_XR.pth.tar
python main.py --eval --config-file ./configs/ESC-DSEC_Xtrm.yaml --model-name ESC-DSEC_Xtrm.pth.tar
python main.py --eval --config-file ./configs/ESC-DSEC_Semantic.yaml --model-name ESC-DSEC_Semantic.pth.tarThe evaluation results are summarized in the table below:
| Model-Dataset | gACC | mACC | mIoU |
|---|---|---|---|
| ESC-DERS_XS | 0.932706 | 0.752572 | 0.670984 |
| ESC-DERS_XR | 0.979211 | 0.707526 | 0.652239 |
| ESC-DSEC_Xtrm | 0.881835 | 0.594495 | 0.508670 |
| ESC-DERS_Semantic | 0.948510 | 0.786135 | 0.710352 |
python -m torch.distributed.launch --nproc_per_node=2 --use_env main.py --config-file ./configs/ESC-DERS_XS.yamlpython main.py --eval --config-file ./configs/ESC-DERS_XS.yaml --model-name model-best.pth.tarThis code is developed on SegFormer and pythae. Thanks for these great projects!
If you find our work useful for your research, please cite the following paper.
@inproceedings{
bao2025recoding,
title={Re-coding for Uncertainties: Edge-awareness Semantic Concordance for Resilient Event-{RGB} Segmentation},
author={Bao, Nan and Zhao, Yifan and Zhu, Lin and Li, Jia},
booktitle={The Thirty-ninth Annual Conference on Neural Information Processing Systems},
year={2025},
url={https://openreview.net/forum?id=uG9F00zKJF}
}